 ALABAMA RESEARCH INSTITUTE

Purchased on Contreet No. \qquad
Account No. \qquad
PRECAUTIONS AGAINST RADIOACTIVITY DISCUSSED. The AEC is presently developing systems for nuclear auxiliary power (SNAP) for the Department of Defense and NASA. These systems convert heat into electricity by either the thermoelectric principle or by a turboelectric generator. The AEC has already provided two isotopic-powered thermoelectric generators for the Navy's Transit navigational satellites. Future plans include a joint AEC-Air Force effort during 1963 to launch the world's first nuclear reactor into space.

A military surgeon in the Air Force, Lt. Col. Charles M. Barnos, D.V.M., Ph.D., has concerned himself with the problem of protection for mankind as a result of this application of nuclear energy to space. As the author of a paper entitled "Safety of Nuclear Systems in Space Applications, " Dr. Barnes points out that several health and safety features were incorporated into the design of the first two nuclear-powered generators. These included:
(1) Nuclear heat was derived from 1600 C Pu-238, which emitted almost pure alpha. Because of the low gamma component, no large shield was placed around the generator, and no shielding was required for the personnel installing and checking out the nuclear power source. Personnel handling the generator were required to wear asbestos gloves to protect them from the generator's $93^{\circ} \mathrm{C}\left(200^{\circ} \mathrm{F}\right)$ surface temperature upon removal from the storage container.
(2) A container was provided at all times for the Pu-238 to prevent human contact and inhalation, or either; to withstand the shock of missile launch and extremes in pressure and temperature; and to withstand fire, explosion, and impact associated with booster malfunction. An experimental demonstration was conducted to simulate trouble spots of launchings.
(3) U. S. launch areas are located adjacent to the Atlantic and Pacific Oceans because the low population density makes ocean impacts an acceptable risk.

Cape Canaverats AFMTC has initiated several precautions of its own againststbe hazard of nuclear releases, such as: prelaunch environmental samples of air, water, soil, etc., were to serve as references of background radioactivity; a survey of the wind patterns was made so that downwind dispersion of radionuclide can be determined, if necessary; constant air sampling was effected; health physicists familiar with alpha monitoring procedure were imported from Air Force and AEC installations for the launch countdown; an emergency evacuation plan was devised for all personnel; and a nuclear recovery Air Force team was alerted and on standby to recover the generator.

The safety concepts incorporated into reactor design are also unique. The reactor will be launched "cold" so that in case of a mishap at launch, the results should not be much greater than

ur. RUDOLF HERMANN

what occurs to non-nuclear components. Startup of the reactor will occur only after a stable and long-lived orbit has been achieved. Radiation from the reactor operation will not be harmful, because the orbit path is unoccupied. At the end of its useful life the reactor will be turned off and the accumulated fission products will be allowed to decay during the balance of its orbital life.

The reactor is designed to disassemble and disintegrate when it becomes heated by its reentry into the Earth's atmosphere. The fission products will be only a minute fraction of those produced, and will not add materially to the contamination of Earth. (Source: Military Surgeons on November 12, 1962) DIAMETER OF MARS REMEASURED. Largely because of optical interference caused by the atmosphere of Mars, no measurement of the planet's diameter has been regarded as precise to date. A new approach was recently reported in Comptes Rendus de l'Academie des Sciences. At the Observatoire de Paris (Meudon), A. Dollfuss and his colleagues used a doubleimage micrometer of high separating power and the Pic du Midi telescope. During the 1954, 1956, and 1958 oppositions, they chose particularly favorable terrestrial conditions for observation.

In 1956, observations showed that the Martian atmosphere was clouded by yellow dust; corresponding estimations of the planet's apparent diameter were about $30 \mathrm{~km}(18.5 \mathrm{mi})$ greater than in previous years. With the necessary corrections and on the basis of over-all observations, the authors believe that the best value for the equatorial diameter of Mars is $6790 \mathrm{~km}(4219 \mathrm{mi})$; its polar diameter is taken as $6710 \mathrm{~km}(4169 \mathrm{mi})$. These measurements yield an average density of 4.09 (Earth average $=5.52$) for Mars. The authors believe the planet probably consists of a dense core surrounded by a less dense layer, thickest at the equator. (Source: New Scientist, December 20, 1962)

STARFISH HIGH-ALTITUDE NUCLEAR TEST EFFECTS DISCUSSED. ("The following material is based closely on a joint status report prepared by the U. S. Atomic Energy Commission, Department of Defense, and National Aeronautics and Space Administration concerning the geomagnetically trapped electrons
from the Starfish high-altitude nuclear test. The test involved a nuclear device in the megaton yield range detonated in the ionosphere at an altitude of hundreds of kilometers in the vicinity of Johnston Island $\left(17.0^{\circ} \mathrm{N}, 191.7^{\circ} \mathrm{E}\right)$, in the Pacific Ocean, at 0900 UT , July 9, 1962.")

It was believed prior to the Starfish test that some particles might be ejected from the inner Van Allen belts. However, the predominant effect was found to be the injection of beta particles into the Earth's field caused by the decay of charged or uncharged fission products. In this manner, a new electron belt is formed, superimposed upon, but extending somewhat below the natural Van Allen belts.

Data on the artificial radiation belt was first provided by the Injun satellite; data from other satellites included the Ariel, Traac, and Telstar. Distribution and persistence of the electrons injected by Starfish as measured by the satellites are not completely consistent; the measurements from different satellites disagree by a factor of from 2 to 4. Although showing fluctuations up to a factor of 10 , the data provided by Telstar gave the most extensive coverage of the new belt. However, the greatest fluctuations were at the greatest distances from Earth where the artificial belt merges with the natural one.

By August 28, 1962, contour maps were constructed from the particle-detector data available. Maximum intensity appears, on the average, at an altitude of about $4000 \mathrm{~km}(2480 \mathrm{mi})$; the electron flux contour of $10^{9} / \mathrm{cm}^{2} / \mathrm{sec}$ is about $5000 \mathrm{~km}(3100 \mathrm{mi})$ thick and extends $6000 \mathrm{~km}(3720 \mathrm{mi})$ in the north-south direction. This peak flux is about ten times the highest maximum ever observed in the outer Van Allen belt. The intensities in the natural Van Allen belt, however, are even less known than those of the artificially created belt.

Computed radiation doses of 2.8×10^{12} electrons $/ \mathrm{cm}^{2} /$ day for the Ariel satellite and 4.5×10^{12} electrons $/ \mathrm{cm}^{2} /$ day for TraacTransit 4 B correlate fairly well with the rapidly falling power available from the vehicles' solar-cell power supplies. The power systems for these satellites were designed for natural radiation and effectively had no shielding; this could result in a 25-to 30per cent reduction of output, which could seriously impair performance, or lead to the loss of useful transmissions before the
design lifetime had been realized. Telstar was equipped with a different type of solar cell (n on p silicon, coated with 0.076 cm (0.030 in.) of sapphire) ; the more conservatively designed power supply system allowed Telstar to function correctly, although the increased radiations were present.

With relation to manned space flight, the external radiation intensity that would cause a dosage of about 1 r to an astronaut's skin, as estimated, is "well below the mission limit previously established by NASA for the Manned Flight program." This estimation is based on the observed distribution of electron flux from the stored electrons of the Starfish test as applicable to the manned project Mercury flights.

Although more electrons were trapped by the Starfish test than had been expected, the increase in radio noise was about as anticipated. Radio-noise observations made at various locations in a spectrum from 18 to $120 \mathrm{Mc} / \mathrm{sec}$ showed the noise to be decreasing with time; in August 1962, the rate was about 10 per cent per week. With the use of special techniques, the radio noise will be detectable at lower latitudes for some time, although "it is not a significant problem to radio astronomy." (Source: International Geophysics Bulletin, October 1962)

NEW TEST SERIES OF UNMANNED VEHICLES SCHEDULED FOR LAUNCH IN MID-1963. The first of six nonorbiting, unmanned test vehicles will be launched from Cape Canaveral, Florida, about the middle of 1963, the Air Force Systems Command has announced.

Officially known as ASSET (Aerothermodynamic/elastic Structural Systems Environmental Tests), the first program will last about 13 months.

ASSET will verify aerodynamic theories, vibration conditions, materials, and design and structural approaches used in hypersonic (five times or more the speed of sound) aircraft and advanced reentry vehicles being developed by AFSC.

The primary purpose of the program is to correlate actual flight test data with theoretical and ground test data. Configuration, materials, component systems and recovery systems for ASSET already have been studied and evaluated in ground facilities.

Reontry teste will provide information on environmental control, guidance and control, instrumentation, recovery techniques and oquipmont, structural cooling, and radar tracking under fon sheath conditions. (Ion shoath is interpreted as the fonized atmospheric layer surrounding a vehicle when it reenters the atmosphere,)

All vehicles will feature stubby, delta (capital "A." shaped) winge, a flat bottom, and a cone-cylinder body. They will be built of rofractory metale and coramios, super alloys, and have titanium floor: .

Four of the vohicles will weigh about $500 \mathrm{~kg}(1100 \mathrm{lb})$ and travel more than $21,000 \mathrm{~km} / \mathrm{hr}(13,000 \mathrm{mph})$ at altitudes of slightly over $70 \mathrm{~km}(43 \mathrm{mi})$. The other two will weigh about $540 \mathrm{~kg}(1200 \mathrm{lb})$ and travel at about $14,000 \mathrm{~km} / \mathrm{hr}(9000 \mathrm{mph})$ at an altitude of more than $22 \mathrm{~km}(35 \mathrm{mi})$.

Provisions for the recovery of all vehicles have been made. Each will be fittod with a conventional recovery system such as a parachute, flotation systom, and location aids. Recovery of the vehicles has been planned in the Atlantic Ocean east of Cape Canaveral, Florida, by modified World War II liberty ships with the aid of search planes.

Four vohicles will be used for aerothermodynamic/structural (ASV) tosts ; the other two will have aerothermodynamic/elastic (AEV) objectives. Specific ASV objectives are to verify environmental predictions regarding extrome temperatures, pressures and heat transfor ratos; to correlato aerodynamic heating, lift, drag and pressure prediction methods and theories; and to evaluate advanced structural design concepts such as heat shields, insulated and cooled structures, and hot structures. More than 140 measuring devices will colloct data on each flight.

Theoretical peak temperature expected to be encountered in the nose tip region of ASV vehicles is about $2200^{\circ} \mathrm{C}\left(4000^{\circ}\right.$ F) or about 275° C hotter than the temperature of an internal combustion ongine. Noso oaps, loading edges and lower surface tost shields will bo made of refractory ceramios and metale.

AEV tosts will be conducted to investigate unstoady aerodynamics (fluttor). Other studios will foous on structural response and poseible dynamic instabilitios resulting from the combination of rapidly varying aerodynamic loade and tomperatures.

Each vehicle will fly a different trajectory to give scientists various data in the field of reentry. Each also will be fitted with a selfdestruct system that provides for the activation of a liquid explosive if the vehicle deviates from the planned trajectory.

The system was incorporated into the vehicles because command destruct from the ground is impossible upon reentry because of the ion sheath or atmospheric layer surrounding the vehicle at that time. Such was the condition that made communications impossible during the reentry of NASA's Friendship 7 and Aurora 7 space capsules. (Source: AFSC news release (USAF))

NEW CORK COMPOSITION PROTECTS MISSILE COMPONENTS FROM HEAT. A new material for protecting experimental missile engines from heat has been developed by the Armstrong Cork Company. Known technically as an "ablation" material, it is a specialized cork composition that absorbs aerodynamic or exhaust heat; it forms a tough char-layer or protective outer skin, which gradually "ablates" or erodes.

The cork composition is being produced for experimental thirdstage engines of the Minuteman (Fig. 1) as well as for the aft dome of experimental second-stage engines of the Polaris. On the Minuteman, the material protects the engine, fuel supply, and other portions from the heat caused by atmospheric friction; on the Polaris, it is used to protect the engine from exhaust heat.

The success of cork composition in the problem of aerodynamic heating can be traced to the natural properties of cork, which burns and conducts heat very slowly. The material will absorb large amounts of heat over a broad range of environmental temperatures and transfer it very slowly towards the areas to be protected. The use of cork also results in weight-saving.

Manufactured under rigid specifications and control, production of the material begins when prime cork is ground to an exact particle size. It is weighed, blended with special binders, and baked in sheet molds by a dielectric heating process. Finally it is cooled, cut, and sanded to precise uniform thicknesses. The binder components can be varied for usage in many other heat insulation applications. An adhesive has also been developed for applying the cork to missile engines. (Source: Data supplied by Armstrong Cork Company)

FIG. 1

NEW HIGH-VACUUM GETTER-ION PUMP ANNOUNCED. A new high-vacuum getter-ion pump is announced by Consolidated Vacuum Corporation. With a capacity for pumping air at 100 liters/sec, the pump is particularly useful in applications requiring systems free of organic vapors, continuous pumping, ultra-high vacuum, and high reliability or fail-safe features.

The new pump (Fig. 2) has a unique triode design and can handle inert gases five times as efficiently as slotted-cathode diode pumps, and twenty-five times as efficiently as diode pumps with plane cathodes.

The device has rapid recovery from short-duration, high-pressure gas loads, and can pump at speeds 50 per cent to 100 per cent greater than its rated speed for 2 -or $3-$ min periods.

Power regulation is automatic for efficient operation during pressure fluctuations. A circuit breaker provides protection against short circuits or accidental exposure to high pressure. (Source: Data supplied by Consolidated Vacuum Corporation)

NEW MANUAL GUN FOR CO2 WELDING OF THIN GAGE METALS. A new and improved air-cooled welding gun--designed specifically for "dip transfer" CO_{2} welding of thin gage metals-has been announced by Air Reduction Company. This new manual gun (Fig. 3) offers qualities well suited for automotive and other mild steel fabricator applications.

The new low-cost welding gun has a 60-deg "gooseneck" design. It is light in weight, reducing operator fatigue through the ease of access to difficult welding locations. For greater flexibility, the gun hose and cables have been extended to $3.6 \mathrm{~m}(12 \mathrm{ft})$ in length. The manual gun can handle 3 steel wire sizes 0.075 , 0.089 , and $0.115 \mathrm{~cm}(0.030,0.035$, and 0.045 in.$)$ in diameter, and is rated at 200 amp do reverse polarity at 100 per cent duty cycle. (Source: Data supplied by Air Reduction Company, Inc.)

TECHNICAI REPORTS AVAILABLE. The following listed technical reports can be requested through the NASA library, M-MS-IPL, Bldg. 4481.

FIG. 2

FIG. 3

NOTE: Those reports with an AD number may be on file in the local ASTIA branch in Bldg. 4484. Readers can save time by calling 876-6088 and inquiring if such reports are available before ordering them through NASA.

1. FLIGHT SIMULATION OF ORBITAL AND REENTRY VEHICLES. Part II--Aerodynamic Information Required for Six Degrees of Freedom Simulation, H. Burning. AD 282995
2. SINGLE AXIS ATTITUDE REGULATION OF EXTRA ATMOSPHERIC VEHICLES, R. A. Peters, V. J. Kovacevich and Dunstan Graham. AD 277221
3. TECHNIQUES FOR ANALYSIS OF NONLINEAR ATTITUDE CONTROL SYSTEMS FOR SPACE VEHICLES. Volume II, Techniques for Analysis and Synthesis of Nonlinear Control Systems, E. I. Ergin and others. AD 282 805
4. TECHNIQUES FOR ANALYSIS OF NONLINEAR ATTITUDE CONTROL SYSTEMS FOR SPACE VEHICLES. Volume III, Examples of Analytical Design of Spacecraft Attitude Control Systems. AD 282706
5. TRANSFER OF TRAINING WITH SIMULATED AIRCRAFT DYNAMICS: I-Variations in Period and Damping of the Phugoid Response, F. A. Muchler and others. AD 278627
6. TRANSFER OF TRAINING WITH SIMULATED AIRCRAFT DYNAMICS: II-Variations in Control Gain and Phugoid Characteristics, F. A. Muckler and others. AD 278613
7. TRANSFER OF TRAINING WITH SIMULATED AIRCRAFT DYNAMICS: III-Variations in Course Complexity and Amplitude, F. A. Muckler and others. AD 278623
8. LINEAR OPERATORS FOR DATA PROCESSING, R. E. Lane. AD 278143
9. MULTIPLE INTEGRATIONS ON A REAL TIME ANALOG COMPUTER, Arthur Hausner. AD 282524
