parmamay oestan stuay of a

RHAL TECHNICAL REPORT mobllity systein anklysis and oesign

02.03012. 1

Prepared io

grone c. harshnespace flobit cemen
Unom
commact mass-110: mor ?

$$
\text { 14no } 1963
$$

U. 3. Gownmat haver ot

Proued for han Forta Compory

Conctorma, Caliinalo, as Titél7

THE RORNG CONGANE
sede olvicton
Shane Wachrveron
(D2-83012-1) PRELIMINARY DESIGN STUDY OF A
N75-74973
lunar local scientific survey module (lssm)
Final Technical Report (General Motors

PRELIMINARY DESIGN STUDY OF A LUNAR

 LOCAL SCIENTIEIC SURVEY MODULE (LSSM)FINAL TECHNICAL REPORT: LSSM MOBILITY SYSTEM D2-83C12-1

Prepared For

The Boenne Company
Scatile, Washington

Under
P.O. No. K-634755-4548, Chane No. 2 (NASA Prime Contract $8-11411$)

FOREWORD

This document is one of the final reports identified in the accompanying document tree presenting the results of a Preliminary Design Study of a Lunar Local Scientific Survey Module (LSSM). This study was performed for the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama under Contract NAS 8-11411, Modification No. 2, by The Boeing Company with the assistance of General Motors Corporation Defense Research Laboratories and A. C. Electronics Division, Radio Corporation of America, and the Garrett Corporation - AiResearch Division.

The NASA Technical Supervisor for the contract was Mr. Lynn L. Bradford, Advanced Systems Office, Marshall Space Flight Center.

BACKGROUND

The Apollo Applications Program (AAP) has been proposed to extend the capabilities of Apollo systems to extensive Earth and lunar orbital, and lunar surface, scientific operations. In a typical AAP lunar surface mission, two flights will be made to the lunar surface. The first will deliver a LEMShelter, together with scientific and operational support equipment. The second flight will deliver two astronaut-scientists in a LEM-Taxi to the vicinity of the LEM-Shelter. A key element of support equipment delivered by the first flight will be surface mobility aids to extend the astronaut's range of exploration. These mobility aids may include one or two lunar local scientific survey modules (LSSM's) and/or a lunar manned flying system (MFS). The LSSM, a manned lunar surface vehicle, will transport a pressure-suited astronaut and an extensive inventory of scientific equipment on sorties of up to 6 hours duration within an area of 8 -kilometer radics about the lunar landing site.

LSSM GENERAL DESCRIPTION

The baseline LSSM vehicle, as illustrated below, is a six-wheeled semiarticulated vehicle capable of traversing the lunar surface under direct control or an on-board pressure-suited crew member. The forward unit provides crew station, life support (PLSS) stowage, and space for carrying a cargo of scientific equipment or a second astronaut. The aft unit carries equipment for communications, navigation, drive system electronics, and power. The LSSM is designed to provide transportation of an astronaut-scientist and a 320 -kilogram (700 pound) load of scientific equipment for round irips of up to 26 kilometers in traversed distance on the lunar surface.

The four-wheeled forward unit and the two-wheeled aft unit are connected by a flexible frame to provide freedom of pitch and roll movement between the two units. Ackermann-type steering is used on both front and rear wheel pairs.

The 1.02-meter (40 -inch)-diameter wheels are of flexible-vire-frame construction. Each wheel is mounted on a parallel arin suspension with toreicn bar springing and a viscous damper. The wheels are driven by individuad electric motors through a harmonic drive gear reduction.

iii

Electric power ie provided by two 3 -kilowatt-hour kllver-zinc etorage batteries that are recharged betweencortico from the LEM-Shelter power system. A 50wati SNAP 27 radiolsotope power aystem supplies the mall amounte of power required during lunar atorago, when the LSSM cannot be dependant on the LEM-Sheltor.

Communications are provided by S-band and VHF equipment adapted from LEM designs. Direct two-way voice communication with Earth is provided, as wall as a 1.6 kilobit-per-second telerretry capabllity for vehicle monitoring and arientific data tranemianior.

A plloting mode of navigation la provided by an odometer disiance measurement system and an inertial measurement unit for heading information.

All of the electrical and electronic equipment is packaged on the aft unit and uses a passive thermal control syntem. Elemonts of this syotem include the thermally inculated compartment, a segmented horizontal apace radiacor, and a iwo-phase wax heat sink. The heat-stik znaterial permita spreading the lifg heat-rejection loads of the 5 -hour eorties over a 2 -hour duty cycle, thus minimizing radiator area requirements.

The crew station provides a seat with adjuatable foot poaition for a range of aptronaut sizeg, a folding boarding platform, a aide-arm controller for vehicle chrotte, brake and oteering functicna, and a control and display parel. The sest and support atructure (roll bser) fold for stowage on the LEM-Stalter.

Life support io provided by the aotronaut presaure suit and three portable life suppor: mystem (PLSS) units. One of these is worn by the astronaut nnd ueed for operations off the vehicle. 'Ths other two unte are vehicle-mounted and provide for on-bozad operstions and an emsrgency reeerve."y" connectione on the cuit fermit rapld and reliade transfar from one unit to another.

The LSSM provides for a variety of both vehicle-mounted and vehicle-transported scientific equipment. Major elements include a 3 -meter drill (20 kilograms) in the first category and the emplaced scientific station (ESS) (136 kilograms) in the second category.

LSSM OPERATION AITD PERFORMANCE

After delivery to the lunar surface as part of the total lunar exploration payload, the LSSM may remain in its stowed position on the LEM-Shelter for up to six months. During this storage period, critical system parameters are monitored by telemetry tiansmission to Earth using the LSM-Shelter S-band equipment. A sigual umbilical connecting the LSSM telemetry sjstem to the LEM-Shelter communications system is provided for this purpose.

The operational mission begins with arrival of the two-man exploration crew in a LEM-Taxi. The LSSM is unloaded from the LEM-Sheiter by the men using mechanical unloading aids as necessary. The LSSM tiendown and unioading system is currently considered an element of payload integration hardware, and not an element of the LSSM system. Technical consideration of requirements in these areas are included in this study, but no resource allocations are protided.

The operational mission involves a series of one-man, 6-hour sorties within an 8 -kilometer radius of the LEM-Shelter. The sortics vary in distance traversed and scientific activity accumplished withis the two principal constraints of 6-huur duration and ó-kilowatt-hour energy reserve in the fully charged LSSM batteries. Typical extremes are a 26 -kilometer traverse distance combined with 1.3 hours of scientific obsarvation, and a 16 -kilometer traverse distance combined with 3 hours of activity to drill a 3 -meter hole and install ans emplaced scientific station.

The LSSM is capatle of performing its rnission in a wide variety of lunar terrain conditions. Drawbar pull-to-weight ratio ranges from 0.56 in hard soils to 0.13
in extremely soft soils (bearing pressure of 1 psi per foot sinkage). Average velocity capability ranges from 7.2 kilometers per hour across maria profiles to 5.6 kilometers per hour across typical uplands profiles. Maximum design speed on level, smooth terrain is 16 kilometers per hour. The vehicle is capable of negotiating 130-centimeter-high step obstacles and 142-centimeterwide crevices. The vehicle is statically stable to 52 degrees in roll and 62 degrees in pitch, and is dynamically stable for all conditions of speed and turning radius on any slopes expected to be encountered in the lunar maria or uplands.

Page
1.0 INTRODUCTION 1-1
1.1 GENERAL 1-!
1.2 REQUIREMENTS 1-3
2.0 REVIEW OF EXISTING WHEELED VEHICLE CONCEPTS $\therefore-1$
2. 1 APPROACH $2-1$
2. 2 DISCUSSION 2-1し
3.0 AGSEMBLY OF LSSM CONCEPTUAL CO:.FIGURATIONS 3-1
. 1 APPROACH TO BASELINE SELECTION 3-1
3. 2 PERFORMANCE COMPARISON OF LSSM CONCEPTS 3-8
4. 0 DESCRIPTION OF BASELINE LSSM CONCEPT 4-1
4. 1 DISCUSSION OF ALTERNATE LSSM CONFIGURATIUNS 4-1
42 BASELINE LSSM CONFIGURATION SUMMARY i-5
5.0 BASFLINE LSSM MOELLITY PERFOKMANCE ANALYSIS $5-1$
5. 1 INTR'JQUCTION 5-1
5. 2 SOFT GROUND MOBILITY 5-2
5. 3 LSSM OBSTACLE PERFORMANCE $5-29$
5. 4 LSSM MANEUVERABILITY 5-35
5.5 DYNAMIC PERFORMANCE ANALYSIS 5-53
5. 6 LSSM MOBILITY PERFORMANCE SUMMARY $5 . .123$
6.0 CONCEPTUAL DESIG* OF BASELINE LSSM MOBILITY SYSTEM 6-1
6. 1 OVERALL MOBILITY SYSTEM 6-1
6. 2 WHEEL ASSEMBLY 6-3
6. 3 WHEEL DRIVE MECHANLSM 6-27
6. 4 SUSPENSION SYETEM 6. 35
6.5 STEERING SYSTEM 6-39
6.6 6.6 CHASSIS - FRAME ASSEMELY 6.51
6.7 ELECTRIC DRIVE SYSTEM 6-56

TABLE OF CONTENTS CONTINLED

Page
7.0 LSSM MOBILITY SYSTEM SPECIFICATIONS 7-1
7. 1 SCOPE 7-1
7.2 APPLICABLE DOCUMENTS 7-2
7.3 REDUIREAENTS 7-3
8.0 FAILURE MODE AND RELIABILITY ANALYSES 8-1
8. 1 FAllirRE MODE AND EFFECT ANALYSIS 8-1
8. 2 RELIABILITY ANALYSIS 8-12
9.0 CONCLUSIONS 9-1

LIST OF ILLUSTRATIONS

Eigure		Page
2.1.2	Summary of Existing Wheeled Vehicle Concepts	2-4
3.1.1	Dimenaional Characteriseics of LSSM Conceptual Conifgurations	3-3
3.1.2	Typical LSSM Conligurationa Considered	3-8
3.1.3	Estimated Masa Breakdown for LSSM Conceptual Configuratione	3-5
3.1.4	Performance Summary of LSSM Conceptual Configurations	3-7
3.2.1	Compurison of Motion Resistance, 4×4 vereus 6×6	3-9
3.2.2	Multiple Paea Tost Results	3.10
3.2.3	Performance Degradation Due to Loee of Drivo to Ono Wheel	3-12
3.2.4	Eotimated Obstacle Performance of 4×4 and 6 rib Concepte	$3-13$
3.2. 5	Poak Wheel Torque ve Step Height (Obstacle 2, Mode 5)	3-14
3.2.6	Estimsted Parformance Charecteriatice of Coriceptual LSSM Deaigne	3-16
4.1.1	Early Baseline Lssid Concept	$4-2$
4.1.2	Eariy Alternate LSSM Concept - Double Ackermann	4-3
4.2.1	Artist'a Concept of Baseline LSSM	4-6
4.2.2	Artist's Concept of Baseline LSSM	4-7
4.2.3	Baecline LSsM Concept Deployed	4-8
4.2.1	Sourcs Envelope (Lesire Stowed)	4-7
4.2.5	Bateline LgSM Mass Summery	4-10
4.2 .6	Baseling LSSM Gensral Characterietice	A-1]
5.2.1	Wheal raruat in Soft Soil	5-6
5.2.2	LSSM Thruat/ Weight Ratio ve Slip	5-7
5.2.3	LSSM Wheel Motion Retietanco va Load	5-10
5. 2.4	Comparieon of Rigid and Flexibio Whedr in Sand (Thooretical and Experimental)	5-12
5.2.5	LSEM Diswher Pull-ticight Ratio va Sliy	$5-13$
5.2.6	Wheel Net Torgie and Power Citarscestibeice	5-20
5.2.7	Basolzne Lssm Overnll Drive Systom Exficiency	5.24

LIST OF ILLUSTRATIONS (CONTINUED)

Eigure		Faue
5.2 .8	Locomotion Energy Tabulation	$5-26$
5.2.9	Locomoiton Energy Tabulation	5-27
5.2.10	LSSM Energy and Average Velocity Comparison	5-28
5.3 .1	Standard Obstaclea and Moden of Negotiation	5011
5.3.2	Standard Obaiacles snd Modes of Negotiation	
5.3.3	Obstacle Teata of 1/2-Scalo Model LSSM	5-32
5.3.4	LSSM Step Obstacle Climbing Capability (Obstacle 2 Mode 5)	5-34
5.1.1	LSSM Stoering Geometry Characteristica	5-36
5.4.2	LSSM Steering Angle va Turning Radius - Rear Axle Wheela	5-38
5.4.3	LSSM Steering Angle va Turning Radiun - Front Axde Wheela	5-39
E. 4.4	LSSM Tracking Characteristic (Double Ackermann)	5.40
5.4.5	LSSM Braking Charactorietics	5-42
5.4.6	LSSM Braking Characteriatics - Soft Soils	5-43
5.4.7	LSSM Eraking Characteristics (Levei Surfaces)	5.44
5. 4.8	Vehtcle Static Slope Stability as a Function of Azimuth Orientation (Polar Plot)	5.46
5.4.9	LSSM Roil Stabllity Characteriatica	5.48
5.4.10	LSSM Lateral Sliding Characteriatice (Continuous Slopes)	5-49
5.4.11	LSSM Pitch Stability Charucteriatice	5×51
5. 4.12	LSEM Pitch Stability Chasacteriatica	5-5:
5.5.1	Deflinition of Vehicle Motion*	5-54
5.5.2	Lire Diatrams of Three Wheel Types	5-56
5.5.3	PGi Curves of nundom Terraina	5.53
5.5.4	Obatacle Terraina	5-60
5.5.5	Dimensione, Angles, and Mass Locations of LSSM	5-6.2
5.5 .6	Ten bree-Bodied Eiemente of the Vahiols	5-66
5.5 .7	Weight Component	5-67
E.5.8	Forces atd Spricg taveo of a Wheol Asnombly	5-68
5.5 .9	Forcea asd Momente of the Forward Lame	5-71
5. 5. 10	Inertia Forcea of Pitching Forward Untt	5-72

LIST OF ILLUSTRATIONS (CONTINUED)

Figuro

Page

$5-74$ 5-74
5.5.12 Forces and Moments of a Pitching Forward Unit
Forces and Moments of a Rolling Forward Unit $5-74$
5.5 .11
5-76
5.5.13 Forces and Moments of the Aft Unit5.5.145.5.155.5.165.5.175.5.185. 5.195.5.215. 5. 235.5.245.5.255.5.265.5.275.5.285. 5.295.5. 305.5.315. 5. 32
5.5.335.5. 34
Forces and Mo:nents of a Rolling Aft Unit $5 . .77$
Forces and Momente of a Pitching Aft Unit 5-77
Forces and Moments of the Elastic Frame 5-79
Pitcn Limiter 5-81
Human Tolerance of Random Vibration $5-83$
Tranaforination of Pitch and Roll Center -85
5.5.20 Spring Characteristic of Wheel Suspension 5-88
Spring Charecteristic of Wheel Frame 5-89
5. 5. 62 Computer Run Schedule for Optimization of Suspension Spring Ratec $5-90$
Spaing Opimization of Suspension Forward Unit 5-92
Spring Optinization of Suspension Aft Unit 5.93
Damper Optimization of Forward Unit 5-94
Damper Optimization of Aft Unit 5.95
Ride Performance of Optimized Vehicle on Random Terrain: Whacl Lift-Oife $5-47$
Rlde Performance of Optimized Vehicle on Random Tertair: Vertical Acceleratione $5-98$
Ride Performance of Optimized Veficle on Random Teryain: Plecil Acceleration 5-79
Ride Parformance of Optimized Vehicle on Random Terrain: Roll Acceleration $5-100$
Ride Performance of Optimized Vehicle on Random Terrain: Meximum Angle Between Unite $5-101$
Ride Pariormance of Optimized Vehtcle on Random Terrain: Damplng Power 5-103
Ride Pexformance of Optimized Vehicle on Random Tercain: Wheel-Ground Force 5-104
Ride Performance of Three Wheel Typea on Random Terrair: Wheel Lift-Ofis $5-105$

LIST OF ILLUSTRATIONS (CONTINUED)

Figure
Page

5.5.35	Ride Performance of Three Wheel Types on Random Terrain: Wheel Lift-Offs	5-100
5.5.36	Ride Performance of Three Wheel Types on Random Terrain: Vertical Acceleration	5.108
5.5.37	Ride Performance of Three Wheel Types on Rardom Terrain: Pitch Acceleration	5-109
5.5.38	Ride Performance of Three Wheel Types on Random Terrain: Wheel Lift-Offs	5-110
5.5. 39	Ride Performance of Three Wheel Types on Obstacie Terrain: Vertical Acceleration	5-112
5.5.40	Ride Performance of Three Wheel Typer on Obstacle Terrain: Pitch Acceleration	5-113
5.5.41	Ride Performance of Three Wheel Types on Obstacle Terrain: Wheel-Ground Force	5-114
5.5.42	Vehicle on a Side Slops: Wheel Lift-Off and wheel Force-Speed-4fe/sec	5-117
5.5.43	Vehicle on a side Siope: Wheel Lift-Off and wheel Force - Speed - 15 ft/sec	5-118
5.5.44	Vehicle on a Front Slupe: Wheel Lift-Off and Wheel Force - Speed - 4 It/oec	5-119
5.5.45	Vehicle on Front Slope: Wheel Lift-Off and Wheel Force - Speed - $15 \mathrm{ft} / \mathrm{sec}$	5-120
5.5.46	Roll Stabillty on Side Slope	5-121
5.5.47	Plich Staizility on Front Slope	5-122
5.6.1	Bazeline LSSM Performance Characteriatics (For Typical Sortie Without ESS)	5-126
6.1.1	Aasembly Mobility Subsystema LESM	6-3
6.1.2	Mobility System General Characteristica	6.6
6.1.3	LSSM Motiltty Syatem Masa Breakdown	6-7
6.2.1	Comparison of Rigld and Flexible Wheele	6-9
6.2.2	Candidate Wheel Concepta	6-11
6.2.3	Description of Candldate Wheel Concepte	6.12

LIST OF ILLUSTRATIONS (CONTINUED)

Figure
6.2. 4
6.2. 5
6.2.6
6.2 .7
6.2.8
6.2.9
6.2. 10
6. 3.1
6.3.2
6.4 .1
6.5.1
6.5. 2
6. 5.3
6.5 .4
6.5.5
6.5 .6
6.6.1
6.6 .2
6.7 .1
6.7 .2
6.7 .3
6.7 .8
6.7 .5
6.7 .6
6.7 .7
6.7 .8
6.7.9
6.7 .10
6.7 .11
6.7 .12

Rolling Road Wheel Test Set Up 6-1.t
Alternate Construction Techniques, Wire Frame Wheel 6-1i
Radial Strip Wheel 6-18
Gheel Design Criteria 6-21
Wheel Wire Frame Mobility Subsystem L.SSM 6-23
Wire Frame Wheel Concept, Test Article 6-24
Wheel Mase Summary 6-26
Wheel Drive Mechanism Subsystem 6-29
Wheel Drive Mechanism Mass Summary 6-34
Suspension Subsystem LSSM 6-37
LSSM Steering Angle va Turning Radlus - Rear Axle Whecls $6-42$
LSSM Steering Angle vs Turning Radius - Front Axle Wheels 6-i3
Steering Aciuator Subsystem LSSM 6-94
LSSM Steering Motor Output Characteriatics 6-46
LSSM Stecring - Open Loop 6-47
LSSM Steering - Closed Loop . 6-:8
Chasia Assy - Forward and Aft Structure 6-53
$\begin{array}{ll}\text { Chasels-Frame Breakdown } & 6.55\end{array}$
Major Elementa of an Electric Drive System 6.57
LSSM Drive Motor Torque vs Speed u-59
LSSM Drive Motor Outnut Power va Speed $\quad 6.60$
Wheel Velocity Correction Factora for Various Steering Angles 6-61
LSSM Electic Drive System 6-63
$\begin{array}{ll}\text { Two-inverter Drive Syatem } & 6-65\end{array}$
Wheel Speed Difference Number ve Vohicle Speed $\quad 6.66$
Sis-inverter Drive Syetem 6.69
Induction Wotor Characteriotics 6-71
LOSM Drive Motor 1^{2} R Rotor Logsea 6.7.3
Mator icaling Ezctor $D^{2} L$ fur LSSM, inta $6-75$
Motor Volinge ve Speed $\quad 6.76$

LIST OF ILLUSTRATIONS (CONTINUED)

Figure Page
6.7 .13 Line Current ve Motor Speed 6-77
6.7.14 Efficiency and Optimum Frequency va Motor Speed 6-79
6.7.15 Motor Current va Slip Frequency 6-80
6.7.16 Motor Efficiency ve Slip Frequency 6-81
6.7 .17 Three Motur Designa, Efficiency and Power Loss 6-82
6.7. 18 Motor Heat Digaipation 6-82
6.7.19 LSSM Threc Phase Traction Motor 6-84
6.7. 20 L.SSM Electric Drive Power Conditioning Circuit 6-85
6.7 .21 Powar Conditioning Circuit Input and Output Waveforma 6-87
6.7 .22 Battery Current ve Speed 6-88
6. 7.23 Inverter-Modulator Power Loesea va Speed 6-89
6.7.24 Inverter-Modulator Packaging Arrangement $6-90$
6.7 .25 Motor-Inverter Input Power ve Speed 6-91
6.7 .26 LSSM Electric Drive Inverter-Motor Effictency $6-93$7.3. 17.3.28.2.1B. 2.28.2. 3
Whet Nat Torque and Power Characterietics 7-6
LSSM Steocing Motor Output Characteriatics 7-12
Baaelino LSSM Concept -- Deployed 8-13
LSSM Moblity System Reliability Estimates -12 Manned Sortiea Minsion8-14
Alphoneus Single LSSM Mieaion - LSSM Sortio Summary 8-16

1.0 INTRODUCTION

1.1 GENERAL

This document reports the iechnical work accomplished by GM Defense Research Laboratories (GM DRL), General Motors Corporation, under Bocing Purchase Order K-634755-9548, Change \#2 (NASA Prime Contract NAS 8-11411), on the Preliminary Design Study of a Lunar "Local Scientific Survey Module" (LSSM).

The major objectives of the program wore to conduct a preliminary design of the selected LSSM concept with emphasis on the mobility system, and to perform a performance analysie of the derived deaign.

To accomplish these technical objectives, the foliowing approach was taken and the results are reported herein:

- A review was made of existing lunar surtace wheled vehtele concepts to determine the best approsch to LSSM doaign.
- A range of fassible LSSM conceptual cunfigurations was defined and their performance chariacteristice determined.
- Based on aystem reatrainte ard performance requirementa, a selection was made of the conceptual appreach considered moat promistra for LSSM basoline destegn. The configuration nelacted wsa a $\mathrm{t} \times 6 \mathrm{scmi}$ articulared vehicle consistimg of a 2 -wheol unit connected to a 4-wheed unit through a flexible frame ccupling. All wheels would be individually powered.

0
The major moblity aubayatema, conoieting of wheele, wheel drive mechentsmw, euspension, etecring, chassho-frame and clectric drive

$$
\begin{aligned}
& \text { D2-63012.1 } \\
& \text { Page 1-1 }
\end{aligned}
$$

system, were deaigned to given performance and environmental requaiements, and incorporated into a complete mobility syatem assembly.

An overall LSSM s;stern concriptual design was performed to achieve integration of all LSSM subsyetems including power, communications, navigation, crew accommodations and scientific equipment, in addition to the molility aystem.

A detailed mobility performance analysis of the baseline LSSM was performed including characteristics pertairing to soft fround mobility, obstacle capability, maneuverability and dynamic ride behavior.

Deaign and functional epecifications were prepared for the mobility sybicm.

Failure mode and reliability analyses were performed for the moility system.

1.2 REQUIREMFINTS

Major requiremente affocting LSSM concept eelection ard the design of the mobllity aystem were:

- Maximum LSSM aystem mase 2500 lbm (1140 kg).
- Maximum mase without cargo or operator $1540 \mathrm{lbm}(700 \mathrm{~kg})$.
o Abllity to trannport up to $700 \mathrm{lbm}(318 \mathrm{~kg})$ of specifled scientific equipment, or a second astronaut in place of the cargo.
- Speed of at ieast $5 \mathrm{~km} / \mathrm{hr}$ on level soft soll $\left(k_{c}=0.5, \mathrm{n}=0.5\right)$.
- Speed of at least $8 \mathrm{~km} / \mathrm{hr}$ on levol compactod aoll ($\mathrm{k}_{\mathrm{n}}=6.0, \mathrm{n}=1.25$).
- Ability to negotiate all soll and alope combinations apecified in Engine ring Lunar Model Surface (ELMS), KSC TR-83-D.
o Average apeed capability over ELMS should be at least $5 \mathrm{~km} / \mathrm{hr}$.
- Maximum mobility and manauverability over as wide a range of posesble lunar aurface conditiona as practicable.
- 200 km (125 millab) iotal travel in 14 day (earth) par!od, maximum sortie diatanca of 25 km (16 milea), minimum operational radiua of 8 km (5 milea) from LEM/Shelter.
- Linar day cenight opezetional capability.
- Capable of being etored in standby mode for at least 6 months.
- Compatible with volume constralrits of LEM/Shelter.
- Capable of being unloaded and deployed on the lunar aurface by one astronaut.
- Capable of withstanding all handling, transportation, launch, flight, ataging and operational loadn.
- Misaion auccose and crew anfoty are prime deaign objectives.

2.0 REVIEW OF EXISTING WHEELED VEHICLE CONCEPTS

2.1 APPROACH

In order to assist in the formulation of LSSM vehicle concepts compatible with system and mission requirements, a literature search was conducted to rather together an many previously proposed lunar wheeled vehicle concepts as possible. This review was limited to wheeled vehicle corcepts since etudics performed during the MOLAB Program had shown that, on the basis of locomotion efficiency and reliability in the expected lurar environment, wheels would be the most practical mode of locomotion over the lunar surface.

From a review of the references listed in Figure 2.1.1, it was determined that at least forty-seven (47) wheeled vehicle concepts had been previously considered or proposed for lunar use. These are summarized in Figure 2.1.2 according to preposing organization, literature source, vehicle type, and available characteristica.

Lunar Soft Landing Study for NASA, Army Ballistic Missile Agency, Section [11, ABMA DLS-N-26-59, 17 December 1959.

Grumman Project 344, Summary Report, Studico of Lunar Logistica Suetem Pavinad Parformance, Supplement 1, brudy of LLS Faylords Compatible with a Modified LEM.

Lunar Lofistics System Study, Vol. X, MTP-M-63-I, Gearge C. Marshailipace Fiaght Conter, NASA, March 15, 1963.

Grumman Project 344, Summary Report, Studioa of Lunar Logietics System Fayload Performance, FDi-344-2b, January 7. 1963.

Final Report, Paylnad Porformance Study, Lanar Logiatica Systern, NSL 62-150, Northrop Space Laioratoriea, Decamber 1962.

Final Report, Initial Concept of Lanar Exploration Systems for Apollo, The Booling Company, Aorospace Division, D2-100057-3B, Novomber, 1963.

Lunar Surface Vehicle Subsystam for \& Lurar Rebe, GM DRI., Roport it 63-233, October 1963.

An Intergeted Moonmobile - Spacesuit Conegot, A. B. Haraza, Aarojat Gqueral, SAL Paper 424D, Sctober y 1961.

San Franciaco Examiner, June 15, 1964.
Aviation Weok, June 4, 190\%, Pages 54-57.
Lumar Surface Vehtels, American Machine and Foundry, LSTIA Report AD 255019, Fages 9-14.

JPL Seminar Procesdirga. Status of Doodsne of Lumar Surface Vehiclou, Pagca 6 and 7.

SAE Papor 632 L, PaEon 6 and 7. Janua:y 14, 1963.
Surfaca Enplorationo! the Mann, P.A.E. Stowart, Spaceflight, Vol Lil. No. 2. March 1961.

Figure 2.1.1 Literinure Suarch Roforences

D2-83012-1
Page $2-2$

REFERENCES

(15) Presentetion to dASA Hacceuarters Staff, GM Defense Resecrch Laboratories, S62-205, Nisach 20, 1962.

Tochnical Beta on fovanced Lunar Exploration Vehicles, GM Diease llesemech Latmazuries, he 65-21, March 1965 .

AES/LSSM AEsiyaia and Concegtual Dealgng The Bocing Company,

Final Preaertstion, Grummen LEM Uillization, Grumman Aircraft Euglaeriag Company, 15 July 1965.

Lame Shaitor/Rovar Conceptunl Dagifn ard Evaluationg RLSS-MBLAB Studien, NASA CR-6109\%, Hayem intornatinanl Corporation, Novomber 1964.

 May 1965.

Litersture Semrch Roferances
Figure 2.i.1 (Continued)

Concept No.	$\begin{gathered} \text { Proposed } \\ \text { by } \\ \hline \end{gathered}$	Source	$\begin{gathered} \text { Vehicle } \\ \text { type } \end{gathered}$	Available Characteristics	Comments
7	Grumman	$\begin{aligned} & \text { (4) Pagce } \\ & 6-6,6-7 \& \\ & 6-8 \\ & \text { Fig. 6-13 } \end{aligned}$	Wheeled - 4×4 Articulated (with controlled pitch)	```Wheel Diam. - }150\mathrm{ inches {eff.) Cabin Vol. - None Weight - 1500 lb.```	Manned or unmanned capabilizy, Spacestit operation for short term (2.4 hr) Onc-man crew in manned mode.
3	Grummin	(4) Pases 6-3 and 6-9 Fig. 6-15	Same as above	Sime as above except C.abin Vol. - 100 ft . (eff.) Height - 2370 lb .	Manned or untranned capability. Emergency ahmiter provitad. Not witubie for leng texm use. 2 -man crew 100 milen range manned. 338 rmiles range unmanned.
7	Grummean	$\begin{aligned} & \text { (i) Facos } \\ & 6-9,610, \\ & 8 \% 6-11 \\ & \text { Fig. } 6-13 \\ & 6-17,0-18 \end{aligned}$	Whecied -8×8 Articilated Train, 4 'nite (with coa.. trcimble pitchl.	Wiacel Eiam. - 150 inchea fiti.) Weigtt - 450016. +2000 kb . raciation prosection (luaxreaj)	Remote or manred capability 7-biny niomion will: 2-mman crew, 229 mate tarice ALsnaces.
10	Grumitan	$\begin{aligned} & \text { (1) Pages } \\ & 6-11,6-12 . \\ & 6-13 \\ & \text { Fig, } 6-20 \end{aligned}$	```Wheried - 6 < 6 Articclated 3 unit (coatrallalig pitch)```	Weight - 23.00013.	Long range expioration vesicle can be modified to din uncmannedeurface mad:ficatice vehacle. 28 -day mianion with 3-manncrow. iefo rilide rarige
11	Northrop	$\begin{aligned} & \text { (5) PAx-m } \\ & \text { VII-24:1.ru } \\ & \text { VII } 3 S \text {. } \\ & \text { Fig. VU-15 } \end{aligned}$	Whecled-4x4 Rigid Frisme Ackermanatront	Derget - 240 inctat Wicth - 150 irechea Gabin Vol. - $1900 \mathrm{si}_{3}{ }_{3}^{3}$ Tuiai Vol. - 2100 ft . Witicel Diam. - 20 inctera Weight - 25, 00010 .	Lancerane mpiopation veructe for z-man crew. 2. ogbmale range hard surface and : 000 male rame ecft ground.

Concepe No．	Proposed by	Somese	Vehicle Type	Available Characteristics	Commagets
－ 12	Piorthrop	（5）F2ge＊ VII－35 Fis．Vป－16	4－Wineel Tractor w／2－whech trailer 6×6 fickermann on froms of 4×4	Wicis－ 120 inches Wrect Diame．－（4） $80^{\circ \prime}(2) 60^{\prime \prime}$ Cabia Vol．－ $400 \mathrm{ft} .^{3}$ Weight－25， 0001 b ．	Mults－purpose vehicle झrelter module on 2－wheril prailer．Tractor riay be ripheched from shelier． 2－tan crew．
13	Eosing （2ME）	（6）Pagne 527． 531 FiE．7．10－1	Wheeled 4×4 Articselsed Gocr－typue	1－2ngth－ 197 inches Wids3－103 inches Whelel Diamn．－ 64 in． Whest Wisth－ 12 inchee Tread－9binches Cunin Yoll－ $175 \mathrm{ft}^{3}$ Veigit－4125－4745 lb．	Muli－purpose vehicle 8－day roving
14	GM D\％${ }_{\text {\％}}$	（7）Prges 19．20． 24 Figa．13， 21. 22．23，24．	Wherled 4×4 Flerime france Arsiculated （Comsradled pitch）	Lersges－ 180 inches Wishih－ 120 inches Wrecel Dism．－ 66 in． Wheel Wictich－ 18 in Cabin Val．－ 400 fz． Tread－ 102 inches 3 Heigt！－ 5000 lb．	Scientific Mineica 5day roving capability for 2－man crev 200 mile range
15	CMA LR	$\begin{aligned} & \text { (7) Puges } \\ & \text { 19. } 20, \\ & \text { Fig. } 27.29 \\ & \text { \&. } 30 \end{aligned}$	Whesied 4x 4 Rigid Erame Ackermazin Ster rizu	Lististh－ 168 inctes wixich－ 120 incies Fimel Diann．－ 66 in 。 Tread－ 102 inches 3 Cubi：Vod．－ $400 \mathrm{ft}^{3}$ Wzitht 5000 1b．	Muni－pwrpooe vehicle 8－day roving
16	GM DRL	（7）Pagea 19．21． 25 Fig．27， 28 831	Whecked $6 \pi 6$ Semineasible frame Articulated	Lezfeh－ 264 inches Biach－ 120 inches Whael Diarn．－ 66 in． Ureei wicith－ 18 in． Tread－ 102 inches 3 Cubia Vol．－ 100 ft ． Werght－ 8000 lb ．	Scicraific expicration miszion，8－day roving capability．2－man crew 300 mile range

Concepe iNo.	$\begin{gathered} \text { Proposed } \\ \text { by } \end{gathered}$	Source	$\begin{gathered} \text { Vehicle } \\ \text { Iype } \end{gathered}$	Avaiazle Characieristacs	Comments
17	CAA DRL		Wherled $s \times 0$ Flexible frame Articulated	Lencin - 20tinches With - 120 inches Wheel Dism. - 66 in. Wheel Width- 18 in . Treat - 102 inches 3 Cubin Val. - 250 ft. Weisit - 8000 Ib.	Minti-purpose ehicle tuap roving
10	GMA DAL	(7) Paces 19, $22: 25$, Fig*. 32 : 33	Whecied $\in \times 6$ Flexiste frame Articulated	Lengit - 576 inches Wictin - 204 isches Weel Diam. - 114 in. Wheel Width - 30 in. Treas - 174 inchea Catin Vch. - 1000 fr . Weighe - 24.000 lb.	Scientific erphoration miasion. 30-day misesion capability. Nuclezr power 4-man crew
19	Acrojet General	(3) Page 71	Mrenazted Moon mijic spacesuit. whecled Psoos moine 4×4 articulated thazd sheil epacesuit.	Weight - Vehicle 30501b. Spacesur - 3501 lb . ca.	Lunar Surface cinitoration misaion. 2-manncyety Rigisltires. Cecw kicara hardincil spacesuita attached to vehicle. Fara $=500$ miles.
23	Locitieed	(9)	Wheeled 4×4 Rifid frame Actermarn siecting.	Mrect Liam. - 142 isches Weight - 12. 000 lb .	Muiti-purpase vehicle 1-:ninn crew Rigid wheels
2	Bendix	(10) Fages 54-57	Wheeled 4x4 Rigid frame, Differential or shid steering	Length - 144 inches Wicth - 82 inches Cabin Yot. $\begin{aligned} & 1 \mathrm{man}-5 \mathrm{ft}^{3} \\ & 2 \mathrm{men}-175 \mathrm{ft}^{3} \\ & 3 \mathrm{men}-249 \mathrm{ft}^{3} \\ & \text { Weight - } \\ & 1 \mathrm{man}-4600 \mathrm{lb} . \\ & 2 \mathrm{men}-5400 \mathrm{lb} . \\ & 3 \text { men }-6300 \mathrm{ib} . \end{aligned}$	System involven a modular rover as support for life supfort capatise to te mount ed on moon. Pramered by luel cells. Madiuar rover wi. is 2350 1t. 1 mana capaule wt. is 2246 ib . 2 man capsule wi.is 3022 lb . 3 man capoule re. is $\mathbf{3 6 0 9} \mathbf{l b}$.

Cancept No.	$\begin{gathered} \text { Proposed } \\ \text { ty } \\ \hline \end{gathered}$	Source	Vehicle Type	Available Characteristice	Comments
22	Bendix	$\begin{aligned} & \text { (10) Pages } \\ & 54 \& 57 \end{aligned}$	Whecled 3×3 Rigid Frame Ackermana front wheel.	Lengih - 244 inches Wideh - 144 inches Wheel Diam. - 60 in. Whael Widith - 12 in. Cabin Vol. - Noae Wigeight - 1. 756 lb .	Jnmarned rcver Nuclear power 500 mile range
23	AMF	(1i)	Wheeled 4×4	Weight - 15,000 1b.	Same 2329.
24	Fiughes	(12)	Whocied 4×1 Rigial frema	Ruac	Colliasible whecls for a pizce saving fuel cell or nuclear power
25	Symee Ceseral	(12) $\mathrm{P}_{0} 8$	Whaseled 4×4	Length - 240 inchea Widts - 144 inchea Weight - 3000 lb.	Has accomodations for various attachmerta so accomplish vasioun missions.
23	Coryclar	(13) p. 6-7	Whecled 4×4 Rigid frame	Length - 80 inch wheci base Whacl Diame - 60 in. Wrient - 3300 Ib.	Has smaller aids wheels used to incrasae ohetacle croasirat capisity.
27	Tisaley	(14) P. 42	Wheeled Roiling derice	Diameser - 384 inches	An iallatible apherical cabis insict the single wheel. Gyro stabilized.
28	G3A DAL	(a5) 82 ge $135-143$	Whecled 6×5 Ferritle frame	Orres-ill leagth - 3 ft. Wifes 1 Diam - 9 inches Wenght - 36 1b.	Lecal scientific investigation Unmanned iunar roving vehicl:. Excursion capability to zborst: 000 !.
29	GM DRL	$\begin{aligned} & \text { (15) Pagee } \\ & 147-151 k \\ & 158 \end{aligned}$	Wheeled 3×3 Articuialed fromt wheril	Wheel Diam. - 18 inchee What Ease - 42 inches 	Local Scientific investiention Unirasned lunar zovisg vehicle. Excuraion is aborst 50-65 miles.
30	GM DRL	$\begin{aligned} & (15)(19) \\ & \text { P. } 153 \& 158 \end{aligned}$	Wheeled 4×4 Rigid frame Ackermang ctercing	Whaeel Diam. - 18 inches Wheel Width - 5 inchen Weight - 243 lbs.	Sarre as above. Ezacuraion 50-65 miles

Cascept No.	$\begin{gathered} \text { Proposed } \\ \text { by } \end{gathered}$	Source	Vehicle \qquad	Available Characteristics	Coroments
31	GM DEL	$\begin{aligned} & \text { a5) Pages } \\ & 155,877 \text {. } \\ & \$ 158 \end{aligned}$	Wheeled 6×6 Flexible frame Articulated	Over-all length - 72 in. Wheel Diam. - 18 in . Whacl Width - 9 inches Weigixt - 275 1bs.	Same as Concept 29 Ercursion 60-70 miles
52	GM DIL	$\begin{aligned} & \text { (15) (19) } \\ & \text { Page } 160 \end{aligned}$	Wheeled 6×5 Ferible frame Articulated	Wheel Bane - 66-135 in. Wheel Diam, 22-45 in. Wreight - 450 Ite.	Sanc as above. Excuraion- 250 miles mimitn:um
33	GM DRL	(16)	$6: 6$ Semi flexibie fraxce Articulasec	Leagth - 20.2 ft. Whael Diara - 60 inches Weight - $6400 \mathrm{i} \%$	LESA vehicle, 14-day minsion, 2-mina creve Range - 200 milea
34	GNA DAE	(16)	8×8 SemiAexibis franue Articulated	Length - 32.1 fi. Witces Diain. - 60 inches Weight $-10,300 \mathrm{lb}$.	LESA veliclis, arma 2% stion with actitioani trailer 42-disy massicn, 2-onsm cret. Eisuge - 6CC niles
35	GM DRL	(16)	10×10 Semi Aexible frame Articulated	Lengeth - 41.0 ft . Wreel Diam. - 60 inches Weight - 15,800 1b.	LESA vebicic, came as a hove with another additional trailer. 84-day miosion 2-tina crew Ramas - 1600 milea
36	Bacing (GM DAL)	(i7) Page $95-102$	Whented 6×6 Semi-durible frame Articulated	Oucr-sill length - 192 in. Wheel Diamn. - 48 inches Wheel Width - 12 inches Weright - $220016: 2$	Extended etay time Seicntific emploration Radinl ercuraion -250 milea miximum.
37	Bosion 3 (CM D2L)	(17)	Hinceled 4×4 Rigid frame Ackermann ateering	Noter	Minged Revet i-mian crew

2.2 DISCUSSION

These concepts encompaseed both risid - and articulated - frame types ranging from gyro-stabilised aingle wheel devices (1×1) to train - type vehicles for extended lunar exploration (10×10). Masasas renged from about 50 lbm to $25,000 \mathrm{lbm}$. Ae would be expected, the large majority of the propoed concepte were of the 4 -wheal vartety, with 6 -wheel versions next in popularity. This is not surprisina becauae, unlesa the lunar aurface is radically difforent from what so Sar has beon conaldered, vehtcle concepts based on elther four or six wheels would atrike a reasonzble balance between performance and simplicity for most misatons.

Insofar as LSSi.i application wan concerned, aimple analysed based on syem constreints and performance requiremente reaulted in the conclusion thet only 4×4 's and 6×6 's should bo eoriously considered. Concepts with lese thin four wheels were elimineted on the basis of one or more of the following factora:
o Stability conalderatione

- Pocir obatacle capability
- Poor paylosd carrying capacity.

Concepte with moro than aix wheely wore coneldered not practical for LSSM application on the basis of the following:

- Undue deaign complexity
- Poor maneuverability characteristica
- Difficultica of stowege in LEM/Shelter envelope unleos wheel diameters were kept small.
- Mobllity performance in the ofter aoila would be poor due to emall whed diameiera.

3.0 ASSEMBLY OF LSSM CONCEPYUAL CONFIGURATIONS

3.1 APPROACH TO BASELIIUE SELECTION

Conceptual layouts (both in the atowed and operationel ronfigurations) were prepared of ten 4×4 and 6×6 deaigns, ranging in size from the amalleat considered practical to the largest that could be atowed within the available LEM/Shelter apace envelope.

Thesc concepts encompaesed the following moblity configurations:
$0 \quad 4 \times 4$, rigid framo, fixed wheal geometry

- 4×4, rigid frame, variable wheel geometry
- 4×4, articulated frame
- 6×6, semi-flexible frame
- 6×6, fully-fiexible frame

All concepta utilized dexible wheols with diemotero sanging froin 36 to 48 inches. For the 4×4 's, primary steering modss consideredincluded irontwheel Ackermain, double Ackermann and frame articuistion. In the case of the 6×6 'e, doubie Ackermann, combined Ackermann-articulated, and double frame-articulation were conaicared.

The ten configurations can be dascribed briefly ae follows:

CONCEPT NO.
(i)
(2)

DESCRIPTION
Large 4×4, rific frame, trailing arm rear suaponsion (xoar suapension arme rotated at deployment to achieve. largo wheelbase)
Lange 4×4, GORE-type articulated frame
Largo 6×6, semi-flexible frame (f-wheel unit forward)
Large $6: 6$, somi-Alexible freme (2 whoel unit fomerd)
Lazpe is $x 6$, articulatod in pitch only
Large $6 ; 6$, fully slexible iramg
D2-33012-i
Page 3-1

DESCRIPTION

Small $4 \times$ 1, rigid frame
Small 4×4, GOER-type articulated frame
Small 6×6, aemi-flexible frame
Small 6×6, articulated in pitch only

The dimensional characterietice for these concepte are given in Figure 3.1.1. Some of the typlcal configurations considered are ahown in the aketche of Figure 3.1. 2.

A aimplified musllity performance analysia was conducted for each of the concepta listed. Included were eutimationa of drawbar pull to weight ratio over ELMS and Annex G soft soils, locomotion energy requirements over the ELMS Maria and Uplende modele, obstacle performance, turning radiua and static etability. In order to make the neceasary calculationa, vehicle massos were estimated based on parametric eubsystem data contained in Booing Document D2-83221-1 ertitied "AES/LSSM Anslysis and Conceptia! Design", dated Juns 1965. For these mafe estimates it was assumed that all "large" vehicles carried $270 \mathrm{~kg}(594 \mathrm{lbm})$ of ecientific equipment; the "small" onea $150 \mathrm{~kg}(330 \mathrm{lbm})$. The estimated mase breakdowne for the ten concepte is shown in Figure 3.1.3. In addition, equal whecl loadinge wore assumed in all cases.

Drawbar pull was calculated ior the ofter. apecified ELMS goil ($k_{0}=0.5$, $n=0.5, \theta=32^{\circ}$) and for a very weak soll ued in the Surveyor Luns Roving Vehicle (SLRV) study $\left(k_{0}=0.083, n=1.0,00^{\circ}\right)$. Step obstacle and crovice croseing capabilities were estimated on the biaio of model studies previoualy conciucted in the MOLAB and SLRV progrems. Turning radius and off-tacking could be calculated from the known vehicle geomotrios. Calculaticna of atatic pitch and rall atablity limits were based on center-of gravity heighta estimated from the mase brgakdowna of Figure 3.1.3. Locomotion energy requiroments were ostimated by ecoling resulte proviously obtained for vehicles of similar sire and mese. These requiremente asumed

CHARACTEMETICS	CONCEPT NO.				
	(1)	(2)	(3)	(1)	(5)
Wheelbase (in)	112	95	$58 / 62$	62/58	$60 / 60$
Troad (in)	82	85	82	82	60
Wheel Dia (in)	48	48	40	40	45
Wheel Wicth (in)	10	10	10	9	11
O. A. Lergth (in)	100	144	160	160	165
D. A. wicth (in)	92	92	92	92	80
GRD. Ciearance (in)	22	24	18	18	19
	(6)	(7)	(B)	(9)	(10)
Wheelbase (in)	67.5/67.5	85	80	54/54	54/54
Treadi (in)	69	60	48	48	48
Wheer Dia (in)	45	40	40	36	36
Wheel Width (in)	11	10	10	9	9
O. A. Length (in)	130	125	120	144	144
O.A. Width (in)	80	70	58	57	57
Cand. Clearance (in)	20	20	18	16	17

Figuro 3.1.1-Dirnensional Cheracteriatice of Lesen Conceftual Conitguationo

	CONCEPT NO.				
	(1)	(2)	(3)	(4)	(5)
Sysiem	LBM	LBM	LBM	$\frac{\text { LBM }}{}$	$\frac{\text { IBM }}{}$
Mobility	504	504	509	509	543
Power	220	220	220	220	220
Astrionics	139	139	139	139	139
Crew	88	88	88	88	88
Scientific	594	594	594	594	594
Astronaut	200	200	200	200	200
PLSS (3)	145	145	145	145	145
TOTAL	1890	1890	1895	1895	1929

	(6)	(7)	(8)	(9)	(10)
System	LBM	LBM	LBM	LBM	LBM
Mobility	543	271	271	286	286
Power	220	198	198	198	198
Astrionics	139	114	114	114	114
Crew	88	66	66	66	66
Scientific	594	330	330	330	330
Astronaut	200	200	200	200	200
PLSS (3)	145	145	145	145	145
		1929	1324	1324	1340
POTAL				1340	

Figure 3.1.3 - Estimated Mass Breakdown
For LSSM Conceptual Configurations
a traverso half over the ELMS Maria; and half over the ELMS Uplands. In addition, all concepts were assumed to have a drive syotem efficiency of 90% and a 35% contingency facior was added to allow for energy expenditure due to euriace roughnes. A bummary of tho estimated performance characteristics iy shown in Figure 3.1. \%.

A preliminary degig: review was held to evaluate and compare the proposed cenceptus configuristions. The purpose was to reduce the number of peactical apprazches to baselins LSSM design as much as pousible.

Based on factors such as eatimatea of mobility performance, mission requirementa, payload carrying capacity, available mass, complexity and growth potenital, it was decided that only the large 4×4 rigid irame and 6×6 semifexible irame coníghations ohould bs further conoldered for LSSM design. These concepis are depicted below with their major dimensional characteristica.

(Concopt 1)
Lange 4×4 - Ricld-Extended Tralling Arm

Cverall Length - $160 \mathrm{in}(406 \mathrm{~cm})$
Sverall Width - $92 \mathrm{hm}(234 \mathrm{~cm})$
Wheeliare - $112 \mathrm{in}(284 \mathrm{~cm})$
Whocl Diameter - 48 in (122 cm (
When width - $10 \mathrm{in}(25.4 \mathrm{~cm})$

(Concept 3)
Large 6×6 - Sami-Flesible
$160 \ln (406 \mathrm{~cm})$
92 in (234 cm)
$58 / 62 \ln (147 / 157 \mathrm{~cm})$
$40 \mathrm{in}(102 \mathrm{~cm})$
$10 \mathrm{in}(25.4 \mathrm{in})$

Figure 3.1.4-Performance Summary of LSSM Conceptual Configurations

3.2 PERFORMANCE COMPARISCN OF LSSM CONCEPTS

A more comprehenaive performance analysit was then performed for these concepte, including eoft ground, slope climbing and obatacle capability, locomotion anergy requiremento, siability and maneuverability. The majority of the colculations were mace for a grose vehicle mase of $18001 \mathrm{bm}(816 \mathrm{~kg})$, which was the ealimated besaline mase at the time this work was cone ducted, with all wheela equaliy loged. Conter of gravity heighte above the ground were estimated to be 32 incines for the 6×6 and 34 inchea for the 4×4, due to tho larger wheel diameter. Wheel deflectiong on hard surface were 1.67 inches in both cases.

The equatione and techniques to evaluate soft grcund and slope cilmbing (drawbar-pull to weight satio) capability, stability, maneuvarability and energy requivementa are given in Sections 5.2 and 5.4 of this report. The only important difference hetween the preaent andyois and the bazeline iSSM moblity amiysis in Section 5. 0 is the fact that in this caoe arive bystern efficiency of 40% wes eabumed, constant over the entize bpeed range, whereas for baseline evaluation the drive eystem efficiency waa a known function of speed.

Figure 3.2 .1 compares the tctal motion retietance of the 4×4 concepe with 48 inch diameters with that of the 6×6 with 40 inch wheels. The comptrison wea rade for two acils ; the seftest ELMS $\left(k_{0}=0.5, n=0.5,0=32^{\circ}\right)$, and the veay woak acill proviously uesd in the SLRV atudies $\left(k_{0}=0.083, n=1.0,0-20^{\circ}\right.$) Motion rebietarce has been plotten am a furction of vehicla mana, with the range of intereat for LSSM deaign irdicatod. Although aboolute difforencea between the two concepte do not appeax to be laree, thay could be algnificant in terma of energy requiromenta mince these are dirsct function of resistance.

Figure 3.2.2 Ghows test regulte obtained froin tingle wheel teste conducted under conirollod corditions in the GM DRE abil bin. They dluntrate the offect on motion zeoleterce of raultiple pasmen mede by a wheol running in the came rut. It can be seen thet there in a dacrease ingesiatance on both the socond

TONED 700-I5 PNEURATIC TIRE IN SAND
 WHEEL LOAD - 140 LBF 673 MTHTONSI

Figure 3.2.2 - Multipio Pess Test Reaulte
and third passes. Since all calculations of motion resistance, drawbar pull and locomotion energy are based on the assumption that all wheels operate ir. virgin soll, it can be deduced that in the case of tracking wheele the advantages of a 6×6 over a 4×4 are greater than can be indicated by the usual analytical techniques. The inflation pressure used for these tests was 1.0 pai, as compared to the estimated LSSM ground pressure of $0.5-0.7$ psi.

The impact of the lose of drive to one wheel due to mechanical or electrical fallure is graphically presented in Figure 3.2.3 for the 6×6 and 4×4 LSSM concepts in terma of drawbar-pull-to-weight ratio. Note that in the very soft ($k_{0}=0.083$) soll, lose of drive to one of 4×4 wheels results in a reduction of DP/W ratio of more than one-half. Even in a very compact soil $\left(k_{0}=6\right)$, where the drawbar pull capability of the two concepts is equal when all wheelo are driven, degradation for the 4×4 is much greater than for the 6×6.

The chart of Figure 3.2.4 summarizes the catimated capabilities of the 4×4 and 6×6 concepts over the obstacles specifisd in "Annes G. Mobility Criteria, April $1964^{\prime \prime}$, an attachment to the statement-of-work. (The obstacles and their moder of negotiation are depicted in Figurea 5.3.1 and 5.3.2 of this report. Perheps the cases of groatest Intereat are Obstacle 2 - Mode 2 which represente crevice erossing, and Obitacle 2 - Mode 5 which is the care of a vehicle climbing a vertical step obstacle.) The capabilities shown are based on model test results obtained for 4×4 and 6×6 conceptr during the MOLAB program. The resulto shown are somewhat idealized as they do not consicer the effect of suspension, unusually high c.g., or unequal axle load dietributiun. They axc, however, indicative of the relative performance of the LSSM concepte under consideration.

Estimated peak torque requirements as a function of step height, based on model test resulta, are plotied in Figure 3.2 .5 for a 6×6 semi-flexible frame vehicle with 40 inch wheels and a 4×4 rigid-frame vehicle with 48 Inch whecls. For a given obstacle height, the 6×6 concept requircu significantly leas torque than

D2-83012.1
Paga 3-12

	$\begin{aligned} & 28 \\ & 19 \\ & 20 \\ & 00 \end{aligned}$	$\begin{aligned} & 56 \\ & \hline 188 \\ & \hline \end{aligned}$	$\begin{aligned} & \substack{8 \\ 18 \\ 10} \end{aligned}$	
	$\begin{aligned} & 48 \\ & \hline 15 \\ & \hline 15 \\ & \hline 8=12 \\ & \hline 50 \end{aligned}$			(218

D2-03012-1
Pago 3-14
the 4×4. Furkhermore, the torque requiramente of the 4×4 increace rapldy es etep haight increasea, in comparison to the 6×6. Designing the 4×4 (0 s a step hoight capability of $50 \mathrm{~mm}(20$ inches) and the 6×6 for a capability of $100 \mathrm{~cm}(40$ inches) would result in a aignificantiy larger drive eyotem for the 4×4.

In addition to the reeulte illustrated, calculations were made of drawbar pull to weight (DP/W) ratio, turning radius, pitch and roll atablity ard locomotisn energy. The rasulte of the performance analysis are summarised in Figure 3.2.6. It can be aeen from this and proviously lllustrated resuits that the 6×6 emflexible frame concept is superior to the 4×4 rigid frame configuration in all aspecte of mobility performance. Furthermore, qualitative assesements of failure mode operation and syotem seliability alao appeared to favor the 6×6, due to inherent aubsyatem raduniencive. 3Ince the 4×4^{0} appeared to have little if any advantage from the pointe-of-viow of factors such ae masa, design almplicity or payload carrying capacity, the 6×6 emiflexible frama conflguration was solectsd for L3SM baseline dosign.

4.0 DESCRIPTION OF BASESINE LSSM CONCEPT

4. 1 DIECUSSION OE ALTERNATE LSSM CONFIGURATIONS

Two aliernate varaion of tie 6×6 temiflewibie frame configuration were originally conaldered for baseline design.

Both conslated of a four-wheel forword unit coupled to a two-wheel aft unit through a fiexible fame, which permits the two unite to pitch and roll relative to aach oiher. Thit feature permite the wheele to maintain contact with the gruund and provide traction oven over aevirely undulating tarrain, and also greatiy enhances obstacio croseing capability. In both cases, the crew station and accommodations for ectentific equipment were located on the forward unit; the aft unit carried a thermal compartment which housed navi- . getion, telecommunleations, drive elactronica and powor aystems. All major dimenaions auch ag wheol aise, overull length and width, wheol base, etc. were dianticel. The only limporiant diferences between the two varilons were in teering aind suepension dosign.

Ono voralon (Figure 4.1.1) was aimilar to MOLAB in that it incorporated Ackermann-typn steoring of the front whecis of the forward unit and articulated eteoring of the aft unit. In the second veraion (Figure 4.1.2) the wheele of the at. unit were also Ackermann steored.

With respect to ausponston design, the firet version had parallelarm-type suspanatona at the front wheols, and trating arm suepenatons on the center and ait eete of wheoln. The aecond voralon incorporated ldentical parallel armtyps sueponsions throughout.

In the arly atages of the study, the durision wao made to litilse the first voreion as the baeeline LSSM concept. This was dug largely to two factorn:

- Articulsted eteertng of tho aif unit permittsd a wider thormal com: stern aince there would be so whogl encreachment as in tho cess " Ackermann stefring.
- Dise to chabsin gesmetry, trailig orm euspangons apparaci to

However, as preliminary dealgn of the mobillty syoism progressed and systern requirementa became better defined, it wa determined that the major objectiona to the second version were not crilical.

Since use of identical stecring mechanisme for the foryard and aft units and identical oupensions at all whecla would result in a simpler dealgn and greatly reduce development and testing requiremonts, the concept with double-Ackermann teoring and parallol arm-type aupensions throughout was redefinedae the baseline LSSM.

4.2 BASELINE LSSM CONFIGURATION SUMMARY

The baseline LSSM as it finally evolved in the course of this study is shown in ite operational mode in Figurea 4.2.1. 4.2.2 and 4.2.3. The crew accommodations system including seat, controls, displays, roll bar and PLSS, and actentific equipment are located on the forward unit. Batteries, power dietribution and regulation equipment, drive electronlca, telecommunicationg and navigation equipment are located in a thermal compartment on the aft unit.

In order to atow the LSSM in the LEM/Shelter apace envelope (Figure 4.2.4), il is necessary to collapee the vohicle by sliding the flexible frams assembly into the forward unit chaseif. In addition, crew etation roll bar, controle and dieplay conzole and antennas are either collapsed or folded to atiafy envelope constrainte. The SNAP-27 is attached to the forward unit frame and provides power for heating during traneit and storage. Life support ayetems and aclentific equipment are placed on the vehiclo only after deployment on the lunar surface.

A mass summary of the baseline LSSM is given in Figure 4.2.5 for two cases; when carrying maximum scientific payload and during a typical mortie.

The general characteristicn of the baseline LSSM (typical sortio asec) are Hiven in Figure 4.2.6.

Figure 4.2.3-Baoolino LSSM Concept.
D2-83012-1 Deployed

4.8^{-1}

Figurn 4.2.4-S

Description	Maximum Payload		Typical Sortie	
	LBM	KG	1 BM	KG
Mobility System	603	274	603	274
Crew System	56	25	56	25
Power System	304	138	304	138
Astrionics	113	51	113	51
Thermal Compartment Structure \& Insulation	63	29	63	29
*Empty Vehicle Mass	1139	517	1139	517
Astronaut + PLSS	320	145	320	145
Spare PLSS (2)	135	61	135	61
Scientific Equipment	705	320	576	261
Gross Vehicle Mass	2299	1043	2170	984

* SNAP 27 Included With Scientific Equipment
Figure 4.2.5 Baseline LSSM Mass Summary

Gross Vehicle Mass (with Crew)
C. G. Height Above Ground - Overall

Forward Unit
Aft Unit
Axle Load Distribution
Front
Center

Rear

Overall Length
Overall Width
Wheel Diameter
Wheel Width
Wheel Deflection (at Nominal Load)
Average Ground Pressure

> Hard Surface
> Soft Soil $\left(k_{\emptyset}=0.5, n=0.5\right)$

Wheel Base
Wheel Tread
Ground Clearance
Hang-Up Radius (Between Axles)
(Between Wheels)
Angle of Approach
Angle of Departure (Less SNAP 27)
Basic Platform Area - Total
Forward Unit
Aft Unit
$984 \mathrm{~kg}(2170 \mathrm{lbm})$
0.82 m (32.2 in.$)$
$0.88 \mathrm{~m}(34.8 \mathrm{in}$.
$0.67 \mathrm{~m}(26.4 \mathrm{in}$.
30.9%
37. 1%
32. 0%

406 cm (160 in.)
234 cm (92 in.)
101.6 cm (40 in.)
25.4 cm (10 in.)
$4.3 \mathrm{~cm}(1.67 \mathrm{in}$.
0.7 psi
0.5 psi
$147 / 158 \mathrm{~cm}(58 / 62 \mathrm{in}$.
209 cm (82 in.)
45.7 cm (18 in.)
$35.5 / 41.9 \mathrm{~cm}(14 / 16.5 \mathrm{in}$. 132.1 cm (52 in.)
$90^{\circ}+$
$90^{\circ}+$
$4.61 \mathrm{~m}^{2}\left(49.6 \mathrm{ft}^{2}\right)$
$3.56 \mathrm{~m}^{2}\left(39.3 \mathrm{ft}^{2}\right)$
$1.05 \mathrm{~m}^{2}\left(11.3 \mathrm{ft}^{2}\right)$

Figure 4.2.6 Baseline LSSM General Characteristics

5.1 INTRODUCTION

This part of the report on mobility analysis of the baseline LSSM covers the -iollowing aspects of vehicle performance:
o Mobility over soft ground

- Obstacle capability
- Maneuverability
- Dynamic ride behavior over rough terrain

Each subject is discussed separately under individual sections, and the results summarized.

The evaluation of mobility in soft soils was largely based on rnathematical models of soil-vehicle relationships develcped by M1. G. Bekker and extended by the Land Locomotion Laboratory of the Army Tank Automotive Center. Obstacle capability was determined by means of scale-model tests. The analysis of maneuverability was by means of equations standard in automotive engineering, modified to the "non-standard" LSSM baseline design. Dynamic performance over rough terrain was evaluated by means of an extensive analog computce program.

5.2.1 General

The soft ground mobility performance a nalysis included:

- Tractive performance
o Motion resistance
- Drawbar -pull capability or gradeability
- Drive power and torque requirements
- Locomotion energy requirements

The evaluation of locomotion performance in soft soils was based on analytical and experimental methods developed by M. G. Beiker for the purpose of evaluating terrain-vehicle systems in off-the-road locomotion. In this approach, mathematical models of the soil-vehicle relationship were formulated to express vehicle performarce characteristics, i.e., thrust, motion resistance, gradeability, etc. Laboratory scale model experiments were also utilized in this approach to solve mobility problems which were not readily amenable to analytical treatment. Most of the mobility computations were performed with the aid of the 7040 digital computer, making it possible to perform extensive parametric analyses.

5.2.2 Vehicle Characteriatica

All calculations following were performed for the baseline LSSM as described in the previous section of the report. Gross vehicle nass was taken as 2170 lbm (984 kg) with the following axle load distribution on level ground:

- Front -

30. 9%

- Center -

37. 1\%
o Rear -
32.0\%

The assumption was made that the two wheels on one axle would be equally loaded. Other vehicle characteristics pertinent to these calculations were:

- Wheel dimensions -
o Wheel deflection rate -
- Coefficient of rolling resistance -

40 in . O. D. $\times 10 \mathrm{in}$. wide $36 \mathrm{lb} / \mathrm{in}$.
0.04

The latter value is the resistance due to wheel flexure and was determined y means of tests on the GM DRL rolling road. The actual values measured in a 60 inch wire frame wheel, over a wide range of loadings, varied between I. 02 to 0.04 .

i.2.3 Surface Characteristics

n order to evaluate mobility performance, in addition to knowing the pertinent ehicle parameters such as mass, load distribution, size and form of the conact area and power characteristics, it is necessary to quantitatively describe he terrain characteristics that affect performance. In this study, calculations vere based mainly on the terrain characteristics of the Enginecring Lunar Model Surface (ELMS), given in Annex A of the statement-of-work. Combinations ,f soil values specified were: $\left[k_{0}=0.5, n=0.5, \emptyset=32^{\circ}\right],\left[k_{0}=1.0, n=0.75\right.$; $\left.1=32^{\circ}\right],\left[k_{0}=3.0, n=1.0,0=32^{\circ}\right]$ and $\left[k_{\square}=6.0, n=1.25,0=32^{\circ}\right]$, where $\emptyset=$ soil angle of friction, and k_{\emptyset} and n are vertical deformation parameters y means of which vehicle sinkage can be calculated. Another soil given for :onsideration (Annex G of statement-of-work) had the characteristics of a very veak soil $\left[k_{\emptyset}=0.05, n=1.0, \emptyset=20^{\circ}\right]$. In all cases, the soils wese considered o be non-cohesive ($c=0, k_{c}=0$). In addition to the given characteristics, it vas necessary to make the following assumptions to complete the necessary :alculations:

- Soil specific weight, $\gamma=0.01 \mathrm{lb} / \mathrm{cu}$. in.
- S $\backslash i 1$ deformation modulus, $K=0.5$
- Coefficient of friction between wheel and hard surface, $\mathcal{M}=0.8$

Che assumptions were necessary for the following reasons:

- Motion resistance due to bulldozing is dependert on the soil specific weight. The value chosen, $\quad \gamma=0.01 \mathrm{lb} / \mathrm{cu}$. in. , corresponds to the specific weight of loose, dry sand, adjusted to "lunar weight".
- The value, K, is required to definc the form of the soil thrust - slip curve. Tests sonducted by GM DRL indicate that a value of $K=0.5$ is reasonable for dry loose sand. D2-83012-1 Page 5-3

In order to evaluate performance over a hard, non-deformable surface, the coefficient of friction between wheel and surface must be known. A value of $\mu=0.8$ was selected to permit the vchicle to negotiate the 35 degree slopes specified in the ELMS.

5.2.4 Bascline LSSM Mobility Calculations

Two of the most important measures of vehicle mobility performance are its drawbar pull capability, which determines its ability to climb slopes, accelerate, tow loads, etc., and the energy consumption required for locomotion.

Drawbar pull is defined as the excess thrust a vehicle is capable of developing over and above that required to overcome motion resistance. The thrust (or gross tractive effort) a vehicle can develop depends on the shearing characteristics of the soil.

It has been suggested that the shear stress-strain relationships of soils can be

$$
\begin{aligned}
& \begin{array}{l}
\text { expressed generaily by: } \\
\mathcal{Z}^{\prime}=\left[\frac{c+p \tan \emptyset}{Y}\right]\left[\exp \left(-K_{2}+\sqrt{K_{2}^{2}}-1\right) K_{1} j-\exp \left(-K_{2}-\sqrt{\left.K_{2}-1\right) K_{1} j}\right]\right.
\end{array} \\
& \text { where } \\
& \tau=\text { soil shearing strength (lb/in. }{ }^{2} \text {) } \\
& K_{1}, K_{2} \text { = soil deformation parameters (in }{ }^{-1} \text {, dimensionless) } \\
& j=\text { horizontal soil deformation (in.) } \\
& Y=\text { maximum value of quantity in brackets (dimensionless) } \\
& c=\text { soil cohesion (lb/in. }{ }^{2} \text {) } \\
& \emptyset \text { = soil angle of friction (degrees) } \\
& \mathrm{p}=\text { ground contact pressure (} \mathrm{lb} / \mathrm{in} .{ }^{2} \text {) }
\end{aligned}
$$

Since for most soils: particularly dry granular soils, the stress-strain curve does not exhibit a peak and then a decay (as per Equation 5.1), other investigitors have suggested a simpler equation:

$$
\begin{equation*}
\tau=(c+p \tan \emptyset)\left(1-e^{-j / K}\right) \tag{5.2}
\end{equation*}
$$

where K is a soil deformation modulus (in.) that can readily be determined from conventional shear vane tests. As was stated previously $K=0.5$ provides D2-83012-1

Page 5-4
a close fit between analytical and erperimontal renuls. This is ilusirited in Figure 5.2.1. For comparison purposes, curves derived from Equation(5.1) using values of K_{1} and K_{2} suggested in Annex A are also included.

- The tractive effort (or thrust) developed at the wheel-gurface interface can be found by integrating the shear stress along the ground contact area:

Assuming a uniform ground pressure over the contact area, integrating Equation (5.2) yields:

$$
\begin{equation*}
H=\left[c A+W_{n} \tan \emptyset\right]\left[1+\frac{K}{s l}\left(\exp \left(-\frac{s l}{K}\right)-1\right)\right] \tag{5.3}
\end{equation*}
$$

where

$$
s=\text { wheel } \operatorname{slip}(\%)
$$

$$
R_{.}=\text {length of ground contact area (in.) }
$$

$$
H=\text { tractive effort or thrust (lb.) }
$$

$$
A=g r o u n d \text { contact area (in. }{ }^{2} \text {) }
$$

$$
W_{n}=\text { wheel load normal to the surface (lb.) }
$$

and other terms are as defined previously.

Thus the thrust developed by each wheel can be found as a function of slip if the soil parameters \emptyset and K, and the ground contact length and wheel load normal to the surface are known ($c=0$ in all cases).

A thrust-glip curve for the complete vehicle can be developed by taking the $\mathrm{H}-\mathrm{s}$ curves for each individual wheel and adding the values of H at each value of slip.

Thrust versus slip curves for the baseline LSSM are shown in Figure 5.2.2 covering all soil conditions considered in this study. Note that these curves are for level surfaces and thrust is expressed as a percent of vehicle veight.

To determine drawbar pull capacity, the resistances encountered by the vehicle must also be known. Total motion resistance is composed of the following factors:

D2-83012-1
Page 5-5

Figure 5.2.1 - Wheel Thrust in Soft Soil

D2-83012-1
Page 5-6

D2-83012-1
Page 5-7

This is a loss that takes place entirely within the wheel and can be expressed by

$$
\begin{equation*}
R_{r}=f W_{n} \tag{5,4}
\end{equation*}
$$

where $f=$ a coefficient determined by experimentation and W_{n} is the wheel load normal to the surface. As was stated above, a value of $f=0.04$ has been established for this study.

- Motion Resistance Due to Soil Deformation

This is composed of two factors; resigtance due to soil compaction and resistance due to soil bulldozing. The latter can be determined from the following equation:

$$
\begin{equation*}
R_{b}=1 / 2 \gamma \mathrm{bz}^{2} \tan ^{2}\left(45^{\circ}+\emptyset / 2\right)+2 \mathrm{cbz} \tan \left(45^{\circ}+\emptyset / 2\right) \tag{5.5}
\end{equation*}
$$

where $R_{b}=$ bulldozing resistance (lb.)
$Y=$ specific soil weight ($\mathrm{lb} / \mathrm{in} .{ }^{3}$)
b = width of ground contact area (in.)
$z=$ wheel sinkage (in.)

For the postulated soil models, $c=0$ and γ has been avsumed to be equal to 0.01 .

The equation to be used to calculate compaction resistance depends on whether the whel is considered to be flexible or rigid.

$$
\begin{align*}
& \text { For a rigid wheel, } \\
& \qquad R_{c}=\frac{1}{(3-n)}\left[\frac{3 W_{n}}{(2 n+2) /(2 n+1)}\left(\frac{1}{\sqrt{D}+1)\left(k_{c}+b k_{0}\right)}\right]^{\frac{(2 n+2)}{(2 n+1)}}\right. \tag{5.6}
\end{align*}
$$

where $R_{c}=$ compaction renistarce (lb.)
$n=$ exponent of soil sinkage (dimensionless)
$k_{c}=$ cohesive modulue of aoil deformation (lb/in. ${ }^{n+1}$)
$k_{p}^{c}=$ frictional modulas of soil deformation (lb/in. ${ }^{n+2}$)
$\mathrm{D}=$ wheel diameter (in.)
$\begin{array}{ll}W_{n}=\text { wheei load normal to grourd aurface (1b.) } & \text { D2-83012-1 } \\ b=\text { widch of ground contact area (in.) } & \text { Page 5-8 }\end{array}$

For a flexible wheel
$-\quad R_{c}=\frac{1}{(n+1)\left(k_{c}+b k_{\emptyset}\right) 1 / n}\left[\frac{W_{n}}{\ell}\right] \frac{n+1}{n}$
where $\ell=$ length of ground contact area in inches and the other terms are as described previously. For the postulated soils, $k_{c}=0$.

To determine vhether the flexible or rigid wheel equation should be used, it is necessary to determine the critical ground pressure above which a ilexible wheel behaves like a rigid wheel. This critical pressure can be found from:

$$
\begin{equation*}
P_{\text {crit }}=\frac{W_{n}(n+1)}{b\left[\frac{3 W_{n}}{(3-n) b k_{\emptyset} \sqrt{D}}\right] 1 /(2 n+1) \sqrt{D-\left[\frac{3 W_{n}}{(3-n) b k_{n} \sqrt{D}}\right]}} \tag{5.8}
\end{equation*}
$$

where $p_{c r i t}=c r i t i c a l$ ground pressure and all other terms are as previously described. If this value of $p_{\text {crit }}$ is greater than the ground contact pressure calculated for the case of a flexible wheel, then the wheel can be treated as a high deflection flexible wheel; if lower, the wheel must be considered as a rigid wheel.

- Motion Resistance Due to Slopes

This is the cownhill component of the vehic!e weight and is calculated by
where

$$
\begin{align*}
& R_{\mathrm{g}}=\mathrm{W} \sin \theta \tag{5.9}\\
& \mathrm{R}_{\mathrm{g}}=\text { grade resistance (lb.) } \\
& \mathrm{W}=\text { vehicle weight (lb.) } \\
& \theta=\text { angle of the slope from the horizontal (degrees) }
\end{align*}
$$

If the vehicle is going downhill, R_{g} has a negative value.
The total motion resistance then can be expressed by:

$$
\begin{equation*}
R_{t}=R_{r}+R_{b}+R_{c}+R_{g} \tag{5.10}
\end{equation*}
$$

Curves of motion resistance on level suriaces are given as a function of wheel load in Figure 5.2.3 for the ELMS and Annex G soils. The range of interest for LSGM lies between wheel loads of 55-65 lbf. As an added matter of interest, D2-83012-1

Figure 5.2.4 illustrates the correlation between results derived analytically by means of the above equations, and from tests conducted in dry sand. Also =learly illustrated is the superiority of flexible wheels over rigid wheels from the point-of-view of motion resistance.

Drawbar pull as a function of wheel slip can now be calculated from the relationship:

$$
\begin{equation*}
D P=H-R_{t} \tag{5.11}
\end{equation*}
$$

Figure 5.2 .5 shows the drawbar capability of the baseline LSSM plotted in terms of drawbar pull - to - weight ratio versus wheel slip, for three soil models. Again, the calculations are for level surfaces. The results indicate that the LSSM would be able to negotiate slopes as follows:
(1) For soil $k_{\emptyset}=0.05, n=1.0, \emptyset=20^{\circ}-$ Slope $=7.5^{\circ}$.
(2) For soil $k_{\emptyset}=0.5, n=0.05, \emptyset=32^{\circ}$ - Slope $=27^{\circ}$
(3) For soil $k_{d}=3.0, n=1.0, \emptyset=32^{\circ}$ - Slope $=29^{\circ}$

The large difference in capability in Case (1) as compared to the others is mainly due to the difference in soil friction angle, \emptyset, which results in a large difference in available tractive effort or thrust. The slope climbing capability for the LSSM on a hard, non-deformable surfact would depend on the coefficient of friction between wheels and burface. For example, assuming sufficient torque were available, the coefficient of friction required for climbing a hard surface 35° slope would be at least $y=0.7$.

To estimate stsady - state locomotion energy requirements over amooth terrain, it is necessary only to know the values of the above elements of motion resistance, the efficiency of the vehicle drive system, and the wheel slip relative to the ground contact surface. The equation for this case is

$$
\begin{equation*}
E_{S}=\frac{0.00123 R_{t}}{2(1-s)} \tag{5.12}
\end{equation*}
$$

D2-33012-1
Page 5-13

```
where \(E_{S}=\) steady-state energy ( \(\mathrm{kw}-\mathrm{hr} / \mathrm{km}\) )
    \(\mathbf{R}_{\mathbf{t}}=\) total steady -state motion resistance (lb.)
        \(=R_{r}+R_{b}+R_{c}+R_{g}\)
    \(\eta\) = drive system efficiency (dimensionless)
    \(s=\) slip (dimensionless)
```

The value of \mathcal{Z} depends on the specific design of the drive system and in the case of the LSSM will vary with wheel speed.

To determine the value of slip, it is necessary to know the shearing characteristics of the soil. For steady-state operation, the thrust H developed by the vehicle must equal the total motion resistance R_{t} developed by all wheels. Therefore, knowing R_{t}, the average wheel slip can be found from the vehicle thrust-slip curve.
uus, all factors affecting the steady-state energy can easily be determined ice the terrain and vehicle characteristics are specified. GM DRL has 'epared a 7040 digital computer program which permits rapid calculation the necessary resistance and slip factors. The following vehicle parameters 'e inputs to the program:
o Nominal wheel load, as determined for level surface $-W_{i}(i=1,2, \ldots, 6)$ (lbf)
o Wheel diameter - D_{i} (in)

- Wheel width $-B_{i}$ (in)
o Wheel spring (deflection rate) $-\Psi_{i}$ ($1 \mathrm{~b} / \mathrm{in}$)
o Coefficient of wheel rolling resistance - f_{i} (dimensionless)
he operational mass of the LSSM is presently estimated at 2170 lbm disbuted as per 5.2.2. The pair of wheels on each axle are assumed to be fually loaded. All wheels are 40 incher in diameter with a maximum section idth of 10 inches. The wheel spring rate is estimated ai $36 . \mathrm{lb} / \mathrm{in}$ and as sinted out previously, the coefficien: " f " is taken equal to 0.04.
he values and distribution for the soil parameters $0, k_{6}$, and n, and slopes , used to calculate enersy in this study, are given by the ELMS Maria and plands models. In all cases, c and k_{c} are zero. The form of the thrustip curve for ELTAS soils was assumed to be represented by Equation 5. 2.
he steps carried out to calculate locomotion energy requirements for each smbination of soil type and slope are as follows:
(1)

Calculate wheel normal loading for each wheel

$$
\begin{equation*}
W_{n_{i}}=W_{i} \cos \theta \tag{5.13}
\end{equation*}
$$

The effect of weight shift due to slopes or suspension deflection is neglected. Calculations have shown that these have negligible effect on vehicle energy requirements.

Calculate average ground pressure under each wheel.
(a) Calculate wheel deflection: $\Delta_{i}=W_{n_{i}} / \psi_{i}$
(b) Calculate ground contact length for each wheel on non-deformable surface:

$$
\begin{equation*}
l_{i}^{\prime}=2 \sqrt{\Delta_{i}\left(D_{i}-\Delta_{i}\right)} \tag{5.15}
\end{equation*}
$$

(c) Calculate ground contact width for each wheel on nondeformable surface:

$$
\begin{equation*}
b_{i}^{\prime}=2 \sqrt{\Delta_{i}\left(B_{i}-\Delta_{i}\right)} \tag{5.16}
\end{equation*}
$$

(d) Calculate ground contact area for each wheel on nondeformable surface. Experimental data shows that the area is nearly elliptical in shape and can be approximated by

$$
\begin{equation*}
A_{i}^{\prime}=\frac{\pi}{4} b_{i}^{\prime} l_{i} \tag{5.17}
\end{equation*}
$$

(e) Calculate average ground pressure on hard surface

$$
\begin{equation*}
p_{i}^{\prime}=W_{n_{i}} / A_{i}^{\prime} \tag{5.18}
\end{equation*}
$$

(3) Calculate $p_{c r i t}$ from Equation (5.8). If $p_{c r i t}$ is greater than p_{i}^{\prime} as calculated above, the wheel can be considered flexible; if $p_{\text {crit }}<p_{i}^{\prime}$ then rigid wheel equations must be used. In the case of LSSM, the wheels can be considered flexible.

Calculate wheel sinkage \mathcal{z} for each soil-slope combination.
(a) In the first approximation, calculate sinkage using average grour 1 pressure calculated in Stop 2e above:

$$
\begin{equation*}
z_{i}^{\prime}=\left[p_{i}^{\prime} / k_{\phi}\right]^{1 / n} \tag{5.19}
\end{equation*}
$$

D2-83012-1
Page 5-16

Correct ground contact length for specified soil condition: (see sketch below)

The corrected length is given by:

$$
\begin{equation*}
\ell_{i}=\ell_{i} / 2+\sqrt{\left(\Delta_{i}+z_{i}^{\prime}\right)\left(D_{i}-\Delta_{i}-\Delta z_{i}^{\prime}\right)} \tag{5.20}
\end{equation*}
$$

(c) Correct ground contact width for specified soil condition. In a manner similar to above, this can be determined to be:

$$
\begin{equation*}
b_{i}=2 \sqrt{\left(\Delta_{i}+z_{i}^{\prime}\right)\left(B_{i}-\Delta_{i}-z_{i}^{\prime}\right)} \tag{5.21}
\end{equation*}
$$

(d) Recalculate ground contact area:

$$
\begin{equation*}
A_{i}=\frac{\pi}{4} \ell_{i} b_{i} \tag{5.22}
\end{equation*}
$$

(e) Recalculate average ground pressure:

$$
\begin{equation*}
p_{i}=w_{n_{i}} / A_{i} \tag{5.23}
\end{equation*}
$$

(f) Recalculate sinkage

$$
\begin{equation*}
z_{i}=\left[P_{i} / k_{\emptyset}\right]^{1 / n} \tag{5.24}
\end{equation*}
$$ of sinkage are within 3% of each other.

(5) Calculate the rolling resistance R_{r} for each wheel and sum up for all wheels.

$$
\begin{equation*}
\sum R_{r_{i}}=\sum \sum_{W_{i}} \tag{5.25}
\end{equation*}
$$

Calculate bulldozing resistance \mathcal{R}_{b} for each wheel using Equation (5.5) and sum up for all wheels.

Calculate compaction resistance R_{c} for each wheel and sum up for all wheels. Use Equation (5.7) if wheel is flexible; Equation (5.6) if rigid.

Calculate grade resistance R_{g} for total vehicle.

$$
\begin{equation*}
R_{g}=W \sin \Theta \quad \text { where } W=\text { weight of vehicle } \tag{5.26}
\end{equation*}
$$

$$
\begin{equation*}
R_{t}=R_{r}+R_{b}+R_{c} \pm R_{g} \tag{5.27}
\end{equation*}
$$

Calculate thrust H as a function of slip.
(a) Using Equation (5.3) determine H as a function of slip for each wheel. GM DRL ascumes $K=0.5$ for all ELMS surfaces, including the 35° hard surface. The value of $\tan \theta$, or $A \in$ for this 35° surface is assurned to be 0.8. The ground contact length, \mathcal{L}, has previously been de'ermined for each soil and slope combination in Step 4.b above.
(b) The H versus Slip curve for the complete vehicle is then obtained by adding the separate H values for each wheel at each value of slip. This results in a thrust versus "average" slip relationship.
11) Determine 'average" wheel slip. For steady-state operation, the thrust H must equal the total external motion resistance, R_{t}. Thereiore, knowing R_{t} for the vehicle from Step 9, the value of slip can be read directly from the Thrust-Slip curve derived in Step 10.b above. This is only for those cases where R_{t} is a positive number, in which case drive power must be applied. In cases where the vehicle is goirg downhill, it is possible for R_{t} to have a negative value; that is, $R_{g}>R_{c}+R_{b}+R_{r}$. In these cases brakes are applied to prevent acceleration and no drive energy is expended.
(12) Calculate required wheel torque as follows:
(a) For any surface condition, take total vehicle motion resistance, R_{t}, and divide by the number of wheels to obtain average R_{t} per wheel.
(b) Multiply this average R_{t} by the effective wheel radius where the effective radius is equal to ($D / 2-\Delta$). This is the required value of wheel torque.

Determine average wheel speed. This depends on the torquespeed characteristics of the drive system. The present LSSM drive systcm output torque-speed and poverispeed characteristics are shown in Figure 5.2.6.

These have been derived from the following minimum requirements:
D2-83012-1
Page 5-19

- A maximum vehicle velocity of $16 \mathrm{~km} / \mathrm{hr}$ (10 mph) over hard level surface (this represents a wheel speed of about 92 rpm$)$.
- An $8 \mathrm{~km} / \mathrm{hr}(5 \mathrm{mph})$ velocity over compacted soil with characteristics $k_{\emptyset}=6.0$ and $n=1.25$.
- Maximum continuous duty requirements ($69 \mathrm{ft}-\mathrm{lb}$ of torque) correspond to climbing a 35 degree hard surface slope at a wheel speed of about 5 rpm .
- Maximum intermittent duty torque of $120 \mathrm{ft}-\mathrm{lb}$ at 2 rpm to climb a vertical step obstacle 40 inches high.

Where R_{t} is positive; the wheel speed is found from the torquespeed curve for the corresponding torque value calculated in Step 12.b.

Determine vehicle speed. For the cases where R_{t} has a positive value, this can be determined by:

Speed $=($ Average Wheel Speed) $($ Effective Wheel Radius) (1-Slip)

The value of slip is that found in Step 11, and the wheel speed is that found from Step 13. The effective wheel radius is calculated by finding the average of all wheel deflections and subtracting this value from the undeflected wheel radius. The value of Δ is that used in Step 12.b.

To determine vehicle speed for the cases where R_{t} has a negative value, that is, coming down high angle slopes, the following procedure is used:
(a) Assume that the vehicle is maintained at a constant speed; that is, braking is applied to prevent acceleration.
(b) Assume that the speed of the vehicle coming down the 35° slope (non-deformable surface) is the same as the speed going up the slope. The braking power for this case is then ($-R_{t}$) times (vehicle speed).
(c) Assume that this value of braking power is available for all other slope-soil combinations. Then the vehicle speed for each condition can be found by dividing the braking power by the corresponding value of $-R_{t}$.

$$
\begin{equation*}
E_{S}=\frac{(0.00: 23) R_{t} \text { (Distance) }}{(1-8)} \tag{5.28}
\end{equation*}
$$

where $E_{S}=$ net energy over given surface (kw-hr)
Distance a distance travelled per kilometer over given surface condition (Km)

$$
s=\operatorname{slip}(0-1.0)
$$

$$
R_{t}=\text { total motion resistance (lb) }
$$

(only the cases where R_{t} is positive are considered; that is, where drive power must be supplied for locomotion.)
(18) Energy dissipated by the suspension dampers must also be considered because this must be provided by the drive system. An analog computer program for LSSM operating over an undulating terrain similar to that shown in Ranger 7 photographs established damping power as a function of vehicle speed. This is discussed in Section 5.5 of this report.

Energy for damping that must be supplied can be determined for each travel segment (slope-soil combination) by multiplying travel time (Step 16) for the scgment by the damping power required at the calculated vehicle velocity (Step 14).

As in the case for so-called steady-state energy, damping energy is considered only for those cases where drive power must be supplied. That is, if R_{t} for the vehicle has a negative value, damping energy (E_{d}) is neglected because it is not supplied by the power system.
(19) Add net steady-state and damping energies for each soil-slope combination ($\mathrm{E}_{\mathrm{S}}+\mathrm{E}_{\mathrm{d}}$).
(20)

Determine gross energy due to R_{t} and damping requirements. This depends on drive system efficiency which in turn depends on the specific drive system. For LSSM, the overall efficiency is a combination of electric drive system and wheel drive mechanism efficiencies. The overall efficiency as a function of wheel speed is shown in Figure 5.2.7.

Therefore, dividing the results from Step (19) by the efficiency at a corresponding wheel speed gives the gross value of $\left(E_{R_{i}}+E_{d}\right)$.

(21)
(22)

In addition to the factors so far discussed, energy is also required to accele:ate, brake and steer the vehicle, and to overcome losses due to surface roughness. These latter losses are reflected in increased wheel flexing and slippage, and in impact energy absorbed by the vehicie and ground surface. Since no simple analytical methods are presentiy available to treat these factors in a rational nanner, it is necessary to provide an energy reserve. At the present time, GM DRL is using a reserve of 35% oi the gross value of $\left(E_{R_{t}}+E_{d}\right)$ as calculated in Step (20).

Calculate average velocity capability over ELMS. This is accomplished by adding the travel time for all travel segments. The average velocity is the reciprocal of this value since a total traverse of one kilometer was assumed.

Figures 5.2.8 and 5.2.9 show the results of the locomotion energy calculation procedure for the ELLAS Maria and Uplands models. Similar calculations were made for the maximum estimated LSSM maes of 2300 lbm . This condition reflects a maximum scientific equipment payload of 705 lbm .

The results are summarized in Figure 5.2.10. (Note that the average velocities shown do not :eflect possible limitations that might exist due to ride performance over rough surfiaces.)
LAAOMOTION ENE RGY TABULATION
 VEHCLI MASS 2170 LSM (Typleas Sari:el

Surface Preti ELMS.Menia			Veticle Motion Resianance					Average of S14D	$\begin{aligned} & \text { sitp } \\ & \text { ractor } \\ & (1-1-1) \end{aligned}$	Disance Travel.d pry n (m (x m)		$\begin{aligned} & \text { Whisel } \\ & \text { Tonquel } \\ & 1 \mathrm{Cl}-:!1 \end{aligned}$	$\begin{aligned} & \text { Wheel } \\ & \text { Spers } \\ & (\mathrm{rFm}) \end{aligned}$	Vehicie linear Veiocity ($\mathbf{k} \mathbf{m} / \mathrm{hr}$)	Travel Time (ars/km)	Wheel Damping Power (watt s)	Wheel DampingEnergy(warth hr, km)		$\begin{gathered} \text { Net } \\ \text { Locomoton } \\ \text { Ene:ryy } \\ \text { (wait-hr kns) } \end{gathered}$	Overall Efficiency	Told Locomotion Energy (wat:-hr km)
$\begin{gathered} \text { Mope } \\ \text { (trgres) } \end{gathered}$	perceis Occurence	$\begin{gathered} \text { Sol } \\ \text { Vatues } \end{gathered}$	${ }^{0}$	H_{6}	$\mathrm{R}_{\mathbf{r}}$	$\mathrm{R}_{\text {sicpe }}$	Tous														
0	11	$k_{10}=0.5$	16.48	89.792	14.68	0	31.74	0.0	0.991	0.11	4.35	8.09	30.6	8.80	0.0125	13.24	0.168	0.998	5.329	0.567	9.397
+1	11.25	M 0.5	16.48	80.702	14.48	6.32	38.03	: 1	0.899	01123	5.322	9.68	43.4	7.53	0.0149	20.31	0.154	0.924	6.258	0.563	11.112
-1	11.25	($\quad 32^{*}$	15.48	60.798	14.44	-9.51	23.42	0.7	0.233	0.1125	3.564	0.47	575	10.36	0.0109	17.14	0.187	1.122	4.663	0.565	8.253
- 2	13.23	$\boldsymbol{\kappa}$ - 3.5	18.45	9.721	: 4.47	12.84	44.35	1.3	0.887	0.1225	8.750	11.29	37.9	6.57	0.0187	8.14	0.152	0.912	7.681	0.557	13.754
-8	12.58	$\boldsymbol{r} \boldsymbol{- 0 . 0 9}$	16.15	50 т91	14.47	. 1261	18.08	0.5	0.893	0.1225	2.580	c. 66	i3. 8	12.58	0.0035	25.39	0.241	1.486	4.336	0.547	7.927
+3	-		10.44	40.703	14.46	18.03	50.64	1.5	0.095	000	30.4	1: ${ }^{\text {j }}$ e9	32.8	5.87	0.0141	5.40	c. 093	0.540	5.598	0.548	10.215
-3	\cdots	c $=0$	16.44	10.720	14.46	-18.83	12.14	0.3	0.827	0.08	1.256	3.24	91.6	18.01	$0 . \cos 0$	38.33	0.193	1.158	2.416	0.508	4.756
4	1	$k_{e}=0$	16.42	20.789	16.43	25.50	58.91	1.1	0.983	0.03	3. 51	16.48	20.2	5.04	0.0009	3.32	0.053	0.318	3.879	0.539	7.197
-4	\bigcirc		15.42	20.518	14.43	-25.26	6.40	0.2	0.828	0.05	0.394	8.63	91.6	18.04	0.0031	38.73	0.120°	0.720	1.114	0.508	2.193
- 5	3.75		7.07	9.158	14.43	31.58	35.21	1.7	0.833	0.0375	2.936	13.53	31.2	5.38	0.0070	5.97	4.042	0.252	2.748	0.544	5.051
- 8	2.75	$k_{1}-1.0$	7.07	70.168	14.43	-31.56	-9.00	-	-	0.0375	0	-	-	18.04	0.0023	0	0	0	0		0
+1.5	2.5	M-0.73	7.04	0.105	14.38	$4{ }^{4} 28$	C8.82	2.3	0.977	0.015	1.300	17.53	25.1	4.35	0.0035	4.43	0.016	0.098	1396	0 52;	2.659
-1.5	15		7.04	10.105	14:86	-4728	-23.70	-	-	0.015	0	-	-	7.62	0.0020	0	0	0	0		0
-10	0.71		2.99	90.030	14.28	6287	12.05	3.0	0.970	0009	0312	20.58	10.1	2.85	0.0032	2.50	0.008	0.043	0.360	0 +78	2.508
-10	2.2	* $0^{3.0}$	2.12	20.030	16.28	. 6287	-4.79	-	-	0.009	0	-	-	4.28	0.0021	0	c	0	0		3
.128	0.8	m-1.0	2.79	10030	1414	7830	05.30	3.8	0.961	0006	」.722	24.21	14.7	2.48	0.0024	2.00	0.005	0.030	0.72.	0.461	1.653
-189	0.8		2.17	70.030	14.14	-73 38	-81.43	.	-	0.208	')	-	-	3.19	0.0013	0	0	0)
-13	0.3			50.830	1398	23.71	110.47	5.0	0.950	0005	0715	28.21	12.7	2.12	0.0024	184	0.004	0.024	0.739	0445	1.651
-15	0.51		2.75	50.030	13.92	-68.71	-78.94	-	-	0.005	1	-	-	2.54	0.0020	0	0	n	0		0
+17.8	0.25		2.92	20.030	13.81	108.07	125.43	6.5	0.935	0.0025	0.113	32.07	10.7	1.17	0.0014	1.41	0.002	0012	0.425	0.113	1.029
-17.5	0.95		2.13	30.030	13.81	-108.87	-92.31	-	-	0.0025	0	-	-	2.12	0.0012	0	0	0	0		0
-29	0.25		2.60	0.05	13.61	[23, 83	160.18	0.6	0.914	0.0225	0.472	35.88	9.2	1.49	0.0017	1.19	0.002	$00: 2$	0.454	0369	1.244
-20	0.83			0.089	13.61	-120.83	-107.50	-	*	00025	0	-	-	1.82	0.0014	0	0	0	0		0
- 23	0.15	$\mathrm{k}_{8}-6.0$	1. 68	80.012	31.13	159.01	188.04	11.6	0.324	0. 3015	0376	43.14	7.6	1. 10	0.0014	C. $\mathrm{M}^{\text {a }}$	0.001	0.006	0.382	0.359	1.084
-25	0.181	±-1.25	1.60	0.018	13.13	-159.01	-137.90	-	-	0.0015	1	-	-	1.12	0.0011	0	0	0	0		0
. 50	0.1	$n-0.0$	0	0	12.54	181.03	103.59	0.3	0.987	0001	J23,	4.83	6. 5	1.17	0.0003	0.99	0.001	0.006	0.245	0.325	0.731
-20	0.13	$\mu \infty$:	0	0	12.34	-18103	. 188.47	-	.	0.201	0	-	-	1.15	0.0009	0	0	0	0		0
											40.760				0.1388		1.437	B. 622	49.382		01.804

 แy t. 3sษanvas 7v

	MASS 2170 LBM (884 KG)	MASS 2300 LBiA (1013 KG)
	TYPICAL SORTIE	MAX. PAY LOAD
EMEFGY		
- MARIA	124.1 H. HR/KM	137.3 W.HR/氏M
- UFLARDS	133.5 W.HEKM	145.6 W. H8,
AVEPAGE VELOCITY		
- MARIA	7.2 KM/HR	6.7 KMNHR
- UPLARDS	5.6 Khirir	5.2 KMMR

Figure 5. 2. 10-LSSM Energy and Average Velocity Comparison

r 3 LSSM OBSTACLE PERFORMANCE

5.3.1 General

A test program was conducted utilizing a $1 / 2$ - scale model of the LSSM configuration to determine performance over the types of obstacles specified in Annex G of the gtatement-of-work. The specified obstacles and their modes of negotiation are shown in Figures 5.3.1 and 5.3.2. The cases of greatest interest are Obstacle 2 - Mode 2, which represents the simple case of crossing a crevice of any depth, and Obstacle 2 - Mode 5, which is the case of a vehicle climbing a vertical step obstacle.

The $1 / 2$ scale LSSM , as essentially the same mobility model used in the MOLAB program with appropriate dimensional modifications. Figure 5.3.3 shows the model negotiating a step obstacle. Tests were conducted early in the program before subsystem and payload mass characteristics had been clearly defined. Tests were conducted at equal wheel loading with the vertical center-cf-gravity of the forward unit 35 inches above the ground line, and that of the aft unit 27 inches above. (All values given are in terms of full-size equivalents.) Loads and v.c.g.'s were simulated by mounting adjustable veights at appropriate points on the model. Although the model was equipped with suspensions, it was necessary to lock them out because they were too soft for LSSM simulation. In most cases, incorporation of a suspension would improve obstacle performance. The coefficient between the wheels and plywood obstacle course was on the order of 0.7 .

Results of the tests performed under the above conditions are given below:

Figure 5.3.1 - Standard Oiostacles and Modes of Negotiation

D2-83012-1
Page 5-30

D2-83012-1
Page 5-31

At the present time, axle loadings for baseline LSSM are estimated to be as follows: Front - 31%, Center - 37%, Rear - 32%. Extensive tests conducted and reported during the MOLAB study indicated that overloading of the center axle has negligible effect on step obstacle capability, and might even improve crevice crossing. The present estim es for the vertical centers-of.gravity are: Front unit - 34.9 inches, Aft unit - 26.4 inches. These are very slightly lower than the values used in the model tests, and the differences would have no effect on the results.

The effect of coefficient of fricion on step climbing ability is illustrated in Figure 5.3.4. Note the coefficient of 0.7 permitted the LSSM to develop its fullest capability. A zeduction in coefficient to a value of 0.6 would reduce the maximum step from 51 inches to about 45 inches.

5. 4 LSSM MANEUVERABILITY
5.4.1 Introduction

This part of the report describes studies performed on the baseline LSSM relating to maneuverability. Topics included are:

- Steering characteristics
- Tracking characteristics
- Braking characteristica
- Roll stability
- Pitch stability

5.4.2 Steering Characteristics

The steering characteristics for LSSM were esiablished so a common center of rotation resulted for all wheels during a turn. The geometry is illustrated in the sketch of Figure 5.4.1.

Equations relating the wheel steering angles to the physical dimensions of the LSSM were derived from the geometry, and turning radius determined for each of the four steered wheels as a function of wheel angle. The turning radius is defined as the cutside (wall-to-wall) turning radius, which for this vehicle is that of the outside aft unit wheel, due to the siightly longer aft wheel base.

The minimum tursing radius depends on the position of the inside aft unit wheel which has a maximum steering angle, limited by chassis and suspension geometry, of 25 degrees.

The equationfor determining the wall-to-wall turning radius is:

$$
\begin{equation*}
R=\frac{L_{2}}{\sin \alpha}+\frac{b}{2}+l^{\prime} \tag{5.29}
\end{equation*}
$$

where

- $L_{2}=$ aft wheel base
$d=$ angle of aft unit outsicie wheel
b = wizal width
$1^{\prime \prime}=$ distance fronizer ing pivot to whecl conterlina

Figure 5.4.1-LSSM Steering Geometry Characteristics

The steering angles of the other steered wheels are determined from

$$
\sin \alpha_{i}=\frac{\text { Wheelbase }}{\left[\begin{array}{l}
\text { Distance from Common: Steering } \tag{5.30}\\
\text { Center to Steering Pivot }
\end{array}\right]}
$$

The results of this analysis are shown in Figures 5.4.2 and 5.4.3. The minimum wall-to-wall turning radius is seen to be $18.9 \mathrm{ft}(6.1$ meters). These graphs also indicate the angular relationship the stepred wheels must have for synchronization at any turning radius.

5.4.3 Tracking Characteristics

Due to steering geometry, in turns a certain amoun.t of off-tracking occurs between consecutive wheels (see Figure 5.4.1). The equation for determining the off-tracking of the outside front and rear wheels, relative to the outside center wheel, is:

$$
A^{\prime}=\frac{L}{\sin \alpha}\left[\left(\frac{L}{\sin \alpha}\right)^{2}-L^{2}\right]^{1 / 2}
$$

where $A^{\prime}=$ off-tracking
$L=$ distance from center wheel to wheel under consideration
$\alpha=$ steering angle of wheel under consideration

The tracking characteristics of the baseline LSSM are shown in Figure 5.4.4. The amount of off-tracking for the front and rear wheels is 8 and 9 inches respectively, or just under a wheel width.

5.4.4. LSSM Braking Characteristics

The braking capability of LSSM is affected by the vehicle velocity and the coefficient of friction on hard surfaces, or soil shear strength and motion resistance in soft soils. The minimum stopping distance for a vehicle on - evel ground, assuming constant deceleration and neglecting wheel drive mechanism resistances, is given by:

Figure 5.4.2-LSSM Steering Angle vs Turning Radius - Rear Axle Whecls

Figure 5.4.3-LSSM Steering Angle va Turning Radius - Front Axle Wheels

$s=\left[\frac{\gamma_{m}^{\prime}}{F+\sum R_{t}}\right]\left[\frac{v^{2}}{2}\right]$
where = soil angle of friction
$m=$ vehicle mass
$F=W \tan$ for soils and \mathcal{A} for hard surfaces
$R_{t}=R_{c}+R_{b}+R_{r}$ for soils and R_{r} for hard surfaces
$v=$ vehicle velocity
$\gamma^{\prime}=$ inertia mass factor for rotating parts in the wheels. This was used as 1.04 for LSSM (similar to conventional vehicles).
W = vehicle "lunar weight"
$M=$ coefficient of friction

The braking distances for the baseline LSSM on hard surfaces was determined over a range of coefficients of friction from 0.1 to 1.0 . A family of curves was generated for constant vehic! velocities of 5,10 , and $15 \mathrm{~km} / \mathrm{hr}$. These are shown in Figure 5.4.5. For a coefficient of friction of 0.6 and a speed of $15 \mathrm{~km} / \mathrm{hr}$, the required stopping distance is on the order of 27 feet.

Braking distances wexe also determined for the SSSM travalling at a velocity of $5 \mathrm{~km} / \mathrm{hr}$ over soft soils with the following characteristics:
$0 k_{\emptyset}=0.083, n=1.0, \emptyset=20^{\circ}$

- $k_{\emptyset}=0.5, n=0.5, \emptyset=32^{\circ}$
- $k_{0}=3.0, n=1.0,0=32^{\circ}$

These calculations were made for a range of slopes and the results are plotted in Figure 5.4.6. The results illustrate that stopping distances are greatest for soils where low shearing forces are developed (function of d), even though the soil may be very soft as compared to the others.

Figure 5.4 .7 shows an attempt to correlate braking properties of soft soils to the coefficient of friction on non-deformable surfaces. The technique used jas based on the following relationship:

D2-83012-1
Page 5-41

D2-83012-1
Page 5-42

Figure 5.4.6-LSSM Braking Characteristics - Soft Soils

$W \tan \emptyset+R_{c}+R_{b}+R_{r}=Y\left(W+R_{r}\right.$ (from Eq. 5.31)

On this basis, each soil can be said to have an "equivalent" coefticient of friction as shown.
5.4.5 Vehicle Stability

Static Stability: The static stability characteristice of the LSSM were determined as a functior of slope angle and azimuth orientation. The results were plotted in polar coordirates and are presented in Figure 5.4.8. This polar plot illustrater the static stability characteristics regardless of the direction of vehicle travel. Zero degrees azimuth corresponds to the vehicle travelling straight up the slope; 180 degrees is coming down. From the results shown, the following can be seen.

- For coefficients of friction Less than 1.O. the LSSM will always slide rather than overturn.
- Up to an angle of approach to the slope (azimuth) of 32 degrees, the LSSM will tend to overturn in pitch rather than in roll.
- The minimum slope angle at which the vehicle will roll over is 52°.
o The minimum slope angle at which the vehicle will overturn in pitch is 62°.

Roll Stability in Turns: In the lunar environment, the lateral stability of a vehicle is seriously effected when mancuvering, because the overturning forces due to lateral accelerations at the center of gravity are the same as on earth, while the restoring forces dependent upon vehicle weight are reduced to a $1 / 6$-th faetor. This problem becomes even more gevere when turns are negotiated on straight cortinuous side slopes. Therefore, the problem of LSSM lateral (or roll) stability was investigated for side slope operation. Equatione of equilibrium were get-up for the case of the vehicle overturning about the ground contact - points of the wheels, and the limiting velocity determined as a function of vehicle turning radius and slope. The equation for this case is:

Figuze 5.4.8-Vehicle Static Slope Stability an a Eunction of Axirnuth Orientation (Polar Plot)

$$
\begin{equation*}
v=\left[g R^{\prime}\left(\frac{t}{h} \cos \theta+\sin \theta\right)\right]^{1 / 2} \tag{5.32}
\end{equation*}
$$

where $v=$ limiting velocity
$g=$ lunar gravity
$R^{\prime}=$ vehicle turning radius measured at the $c \cdot g$.
$t=$ lateral distance from wheel contact to $\mathrm{c} . \mathrm{g}$.
$h=$ height of $c . g$. above ground
$\theta=$ slope angle

Overturning will occur only if the friction of coefficient at the wheels is large enough to prevent sliding. Sliding takes place if the lateral acceleration forces developed during a turn are greater than the friction forces. The equation of equilibrium for sliding is as follows:

$$
\begin{equation*}
v=\left[g R^{\prime}(y \cos \theta+\sin \theta)\right]^{1 / 2} \tag{5.33}
\end{equation*}
$$

where f is the coefficient of friction and the other terms are as in Equation (5.32).

The results obtained are summarized in Figures 5.4.9 and 5.4.10. Figure 5.4.9 shows that even for a coefficient of 1.0 , sliding always occurs before the vehicle can become unstable. Calculations show that the coefficient of friction would have to be on the order of 1.3 before instability can take place. These results assume a smooth surface, and do not take the presence of obstacles into account). Figure 5.4.10 shows the turning radius at which sliding takes place as a function of friction coefficient and slope angle. Calculations werc for the case of a vehicle travelling at a velocity of $5 \mathrm{~km} / \mathrm{hr}$ and turning up - slope. For the duwn - slope case, results would be much more conservative.

Pitch Stability: With respect to pitch stability, overturning moments are pro'uced by tractive or braking forces resulting from accelerating cr decelerating the vehicle. The worst cases are for operation on slopes, in which case the limiting accelerations can be expressed by:

$$
\begin{equation*}
a=g\left[\frac{x}{h} \cos \theta-\sin \theta\right] \tag{5.34}
\end{equation*}
$$

wher: $x=$ the longitudinal distance from the front axle of the vehicle to the center-oi-gravity. This equation applies equally for accelerating up or lecelcrating (braking) down the slope. Figure 5. 4. 11 illustrates that, as in the case fra roll stability, the LSSM will always side rather than overturn unless the coefficient of friction is significantly greater than 1.0 . It can also be seen from this grajil that at zero acceleration, the velicle becomes unstable orly if the slope angle exceeds 62 degree.

Limiting accelerations at which sliding takes place can be determined from:

$$
\begin{equation*}
a=g[\mu \cos \theta-\sin \theta] \tag{5.35}
\end{equation*}
$$

The resulte of this calculation are given in Figure 5.4.12 as a function of coeificient of friction.

Figure 5. 4. 11-LSSM Pitch Stability Characteristics

Page 5-51
BRAKING or DECELERATION

- 5.5 DYNAMIC PERFORMANCE ANALYSIS

5.5.1 Int:oduction

The objective of this study was to determine the steady-state and the transient responses of a 6×6 semi-flexible frame vehicle traveling with linear, constant speed over hard ground. Four aspects were of particular interest:

- Optimization of steady-state per.ormance by varying the $\mathrm{d}:$ mping and spring rates of the wheel suspensions.
o Determining the influence of vehicle speed and terrain roughness on steady-state performance of the optimized vehicle.
c Compare the steady-state ride performance of the vehicle with optimized flexible wheels (with and without suspersions) with one equipped with rigid wheels.
- Evaluate the transient response and stability of the vehicle when hitting a 'burp'.
To this end, equations of motion of all forces and moments were programmed on a PACE 231-R analog computer and the outpats evaluated as a function of terrain and vehicle velocity inputs.

5.5.2 The Vohicle

The elements of the vehicle are considered to consist of two rigid compartments connected by a massless, continuous elastic beam, and a pitch limiter. The forward unit is support by four wheels (two axles) and the aft unit by two wheels (one axle). Figure 5.5 .1 is a line diagram illustrating the possicle motions of the vehicle elements. It contains six wheel masses and two compartment masses. To descibe the motion of the masses, a ditum plane and a coordinate system are defined. I "normal" axis is one proceeding along a line normal to th.e datum plane; a "forward" or "roll" axis is identical with a linear movement of the vehicle parallel to the datum plane, and a "side" or "pitch" axis is orthogonal to the vertical and forward axes. The rectangular system of normal, forward, and side axes are connected to the moving vehicle. Because the vehicle moves lintarly with constant speed, one can visualize the vehicle and the coordinate system as standing 3 till and the ground moving with constant speed underneath the vehicle.

D2-83012-1
Page 5-53

The movements of the masses are as follows: The six wheel masses move nrward with constant speed and are allowed to accelerate only vertically. The two compartment masses can accelerate vertically, and also pitch and roll. Therefore, there are a total of 12 degrees of freedom for the vehicle.

Three wheel - suspension combinations were investigated:

1. Flexible Wheel with Suspension

This model consists of:
0 A spring symbolizing the elastic properties of the wheel. The spring is allowed to bottom, at which time a second, very stiff spring is engaged. The spring can also lose contact with the ground. The wheels are point follower.

- A wheel mass.
- A suspension consisting of a bottoming spring and a linear viscous damper.

2. Flexible Wheel without Suspension

With the removal of the suspensions, the "mathematical mode!" vehicle would lack a source of energy dissipation and the dynamics of the undamped model vehicle would probably not reflect the dynamics of the real vehicle, where in addition to the suspension damping numerous other sources of energy dissipation exist, for instance, at the interface of whed and soil, in the tires, in the elaatic frarne, and chassis. To restore the damping capability of the unsuspended vehicle, an arbitrary darmping rate was assigned to the wheels. A damping rate of $2 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$, was chosen for this study. (For comparison, a pneumatic tire of about half the size of the LSSM wheel has a damping rate of about $20 \mathrm{ib}-\mathrm{sec} / \mathrm{in}$).

3. Rigid Wheel with Suspension

This model is composed of a wheel mass and a suspension system similax to that for the flexible wheel.
-nalog models of the three wheel-suspension combinationa are illustricted in

$$
\begin{aligned}
& \mathrm{D} 2-83012 \cdot 1 \\
& \text { Page } 5-55
\end{aligned}
$$

Figure 5.5.2-Line Dlagrams of Three Wheel Types

Figure 5.5.2. The wheels are point iollowers ard axe able to lose contact with the ground.

5.5.3 The Terrain

Three types of terrain models were considered necessary to cover roughnesses ranging from relatively smooth, undulating hills to small, sharp 'bumps'; a "randcm" terrain, a tercain with smalls periodic obstacles, and a terrain with a single obstacle.

The random terain consists of elevation variations which are stable over relatively large distance. They do not contain obstacles such as large rocks, abrupt holes, etc. Furthermore, superimposed slowly varying elevations such as rolling hills were not considered. The roughness of the randorn terrain can be described quantitatively in terms of its power spectral density (PSD). Figure 5.5.3 presents the power spectral densities of the terrains used in this study. The ordinate has units of $\mathrm{ft}^{3} /$ cycle and the abscissa, spatial frequency, has units of cycle/ft. The area under a PSD-curve represents the mean square of the terrain roughness. The curves exhibit essentially similar characteristic features.

Tine curve with an RMS value of 1.0 ft . follows closely the curve describing lunar terrain as interpreted from Ranger VII photograph P979. For comparison, curves of an extremely rough terrain (Bonito Lava Flow, Arizona) and of very smooth terrains (Grass Runway and Concrete Taxiway) are also plotted. An additional terrain was derived from the 1.0 ft . terrain simply by shifting the PSD-curve downward until an RMS value oi 0.5 ft . was obtained.

In this study the two terrain profiles underneath the left and the right side of the vehicle are completely uncorrelated although they exhibit the same statistical properties and follow the same PSD-curve. In reality there could be a correlation between the terrain tracks depending on the auto-correlation function of the terrain and the distance between the wheels. The extent of track correlation has yet to be investigated and, therefore, is not taken into account in this study.

Figure 5. 5. 3- PSD Curvea of Random Terrains

$$
\begin{aligned}
& \mathrm{D} 2-83015-1 \\
& \text { Page } 5-58
\end{aligned}
$$

The wavelength range and spectral levels of interest to the designer of a lunar vehicle are dependent upon the natural frequency, the velocity, and the size of the vehicle he is considering. Using a summary of all existing lunar vehicle designs, a rough estimate yields a natural vehicle frequency of about 1 cps . Corsequently, frequencies below 0.3 cps scarcely affect the dynamic performance of these vehicles. Lunar vehicles are likely to travel at speeds below 10 mph . Therefore, the minimum spatial frequency of interest is (0.3) $(3600 / 10)(5280)=0.02$ cycles/ft. Accordingly, the spatial frequency range below 0.02 cycles/ft. does not affect lunar vehicle dynamics. This range can be pictured as gently rolling terrain.

An upper limit of the frequency range of interest is found by considering the power of terrain wavelengths smaller than the footprint of the wheel. Vehicle footprint lengths range between 1 ft . and 3 ft ., depending on the wheel diameter, the soil condition, and the wheel load. Therefore, spatial frequencies larger than 0.3 to l cycle/ft. will be felt by the wheel only if the associated amplitudes are large enough to cause multiple contact within the footprint. Evidently, a terrain of the Mare Cognitum type yields very little power at frequencies higher than 0.3 cycles/ft. Therefore, terrain periurbations having wavelengths smaller than the footprint length apparently will not indent the wheel significantly.

Because the random terrains exhibit frequencies of significant power only in the low frequency range, a second type of terrain with increasingly higher power in the high-frequency range was added (a frequency analysis of this terrain was not performed). The upper sketch in figure 5.5 .4 shows the profile of this terrain. It consists of triangular obstacles, equally distributed, with a height that is small compared to the wheel diameter ($2 \mathrm{in} ; 1 \mathrm{in} ; 0.5 \mathrm{in}$.). In this phase of the study, the obstacles were assumed to be contacting the two wheels of one axle simultaneously. Consequently, only, ch and vertical bounce of the vehicle was investigated on this terrain.

A third type of terrair consisted of a single bump on a tilted plane. This terrain permitted the study of transient motions and of the stability of the vehicle when

FRONT SLOPE WITH SINGLE RUAAP

SIDE SLOPE WITH
SINGLE BUMP
operating on a slope. Two slope types tilted at $30^{\circ}, 15^{\circ}$, and 0° were investigated. These are illustrated by the bottom two sketches in Figure 5.5.4. The first type represents a side slope with a bump contacting the upper wheels of the vehicle. The second type represents a front slope with a bump contacting both wheels of one axle simultaneously. The 'slope' with an inclination of 0° is a horizontal plane with an obstacle contacting either one wheel or two wheels simultaneously. The form of the bump is sinusoidal; its height is less than the wheel radius (1 ft . and 2 ft .).

5.5.4 Notations

Following is a list of all notations used in this portion of the study, with : corresponding figure reference:

	Angles (radians) α β	angle of forward slope		
θ_{t}	angle of side slope			
θ_{c}	pitch angle of aft unit			
θ_{t}	pitch angle of forward unit			
θ_{c}	roll angle of aft unit			
roll angle of forward unit			\quad	(see Fig. 5)
:---				

Distances (in.)

j

Lunar Weights (lb.)

W_{c}	
W_{t}^{\prime}	Weight of the forward unit
W_{c}^{\prime}	$W_{c} \cos \cos$
$W_{c}^{\prime \prime}$	$W_{c} \sin$
$W_{c}^{\prime \prime \prime}$	$W_{c} \cos \sin$
W_{t}^{\prime}	$W_{t} \cos \cos$
$W_{t}^{\prime \prime}$	$W_{t} \sin$
$W_{t}^{\prime \prime}$,	$W_{t} \cos \sin$

$W_{1} \ldots W_{6}$, Weight of wheel assembly, unsprung (see Fig. 8) Masses (1b. $\mathrm{sec}^{2} / \mathrm{in}$)
$m_{t} \quad$ aft unit (sprung) \quad (see Fig. 5) m_{c}, forward unit (sprurg)

Mass Moments of Inertia (in. lb. sec${ }^{2}$)
$\left.\begin{array}{ll}I_{t} & \text { aft unit, around e.g., roll axle } \\ I_{t} *, & \text { aft unit, around c.g., pitch axle } \\ I_{c}, & \text { forward unit, around c.g., roll axle } \\ I_{c}{ }^{*}, & \text { forward unit, around c.g., pitch axle }\end{array}\right\} \quad$ (sec Fig. 5)

$c_{1} \ldots c_{6}$	suspension	(see Fig. 8)
c_{p}	pitch limiter	(see Fig. 17)

$k_{1} \ldots k_{6}$, suspension
$k_{1} * \ldots k_{6}^{*}$, suspension snubier
$\bar{k}_{1} \ldots \bar{k}_{6}$, wheel
$\bar{k}_{1}{ }^{*} \ldots \bar{k}_{6}{ }^{*}$, whee: snubber
k_{p}, k_{p}^{*}, \quad pitch limiter

Forces (1b)

$S_{1} \ldots S_{6}$.	wheel force between wheel and ground	(see Fig. 8)
$v_{1} \ldots v_{6}$,	suspension force between suspension and compartment	
$V_{t}{ }^{\prime}$	vertical force between aft unit and elastic frame	(see Fig. 16)
V_{c} 。	vertical force between forward unit and elastic frame	
P,	forward force between pitch limiter and compartments	(see Fig. 17)
H_{t}^{\prime} \& $H_{t}{ }^{\prime \prime}$,	side forces at wheels of aft unit	(sce Fig. 13)
$\mathrm{H}_{\mathrm{c}}^{\prime} \& \mathrm{H}_{c}{ }^{\prime}$,	side forces at wheels of forward unit	(see Fig. 9)

Moments (in. lb.)

Miscellaneous

I. \quad Burface moment of elastic frame $\left(\mathrm{n}^{4}\right)$
Q, \quad torsion rate of elastic irame (in. $\mathrm{lb} / \mathrm{rad}$.
E, \quad Young's modulus $\quad\left(\mathrm{lb} / \mathrm{in}^{2}\right)$

5.5.5 Equations of Motion: Gencral Remarks

The derivation of the equations of motion is based on the frec-hody prineiple. Fiest, the vehicle is divided into a suitable number of elements and then forces are applied to re-establish equilibrium. Finally the cyuations of equilibrium are formulated for each element.

For practical reasons the vehicle has been divided into 10 elements (sec Figure 5.5.6) as follows: 6 wheel assamblies, 1 forward unit, 1 elastic frame, 1 pitch damper, 1 aft unit.

All equations are based on the assumption of small argles, that is $\sin x=\tan$ $x=x$ and $\cos x=1$. To derive the cquations of motion the vehicle is considerea to be traveling over a hard suriace sloped both in the forward and side directions. The tilted plane is the datum plane. Consequently, the weizht forces of the masses have to be resolved into three components orthogonal to the datum plane (see Figure 5.5.7) as follows:

$$
\begin{aligned}
& W^{\prime}=W \cos \alpha \cos \beta \\
& W^{\prime \prime}=W \sin \alpha \\
& W^{\prime \prime}=W \cos \alpha \sin \beta
\end{aligned}
$$

5.5.6 Equations of Motion for the Yrheel Asserbbly

Figure 5.5 .8 shows a schematic diagram of a wheol assembly. Al! pointa move in a direction normal to the datum plane. The following notations for the time deperdent ordinates are defined as follows:

Figure 5.5.6-Ten Free-Bcdied Eiements of the Vehicle

D2-83012-1
Page 5-66

Figure 5.5.7-Weight Components

D2-83012.1
Page 5-67

$u_{1} \ldots u_{6} \quad$| distance of the terrain profile underneath the |
| :--- |
| contact point from datum plane |

$y_{1} \ldots y_{6} \quad$| distance of the masses from the datum plane |
| :--- |

$z_{1} \ldots z_{6},$| distance of the connection becween wheel suspension |
| :--- |
| and compartment from detum piane. |

All springs and dampers are linear. The wheels are point followars. Forward thrust, slip, rolling resistances, and motor torque are not considered. Only mass forces, weight forces and spring and damper forces in the direction normal to the datum plane are taker into account.

The wheel operates over three ranges of spring rates as shown in Figure 5.5.8:

- Range I: The wheel leaves the ground and the force S_{i} between
wheel and ground is zero.
o Range II: Only the outer spring frame of the wheel is deflected.
- Range III: Outer and inner spring frames of the wheel are deflected (bottoming). - The suspension also operatcs over three ranges of spring retes as shown in Figure 5.5.8.
o Range I: Only the suspension spring is deflected.
- Ranges H Both suspension spring and snubber are deflected and III. (bottoming) in either direction.

The equations of equilibrium for a wheel-suspension assernbly can be expressed as follows:

$$
\begin{equation*}
S_{i}-W_{i}^{\prime}-m_{i} \ddot{Y}_{i}-V_{i}=0 \tag{1-6}
\end{equation*}
$$

where

$$
\begin{aligned}
& V_{i}=\left\{\begin{array}{l}
k_{i}\left(y_{i}-z_{i}\right)+c_{i}\left(\dot{y}_{i}-\dot{z}_{i}\right)-\cdots i f-\hat{h}_{i} \leqslant y_{i}-z_{i} \leqslant h_{i} \\
k_{i}\left(y_{i}-z_{i}\right)+k_{i}^{*}\left(y_{i}-z_{i}-h_{i}\right)+c_{i}\left(\dot{y}_{i}-\dot{z}_{i}\right)-\ldots i f y_{i}-z_{i}>h_{i} \\
k_{i}\left(y_{i}-z_{i}\right)+k_{i}^{*}\left(y_{i}-z_{i}-\hat{h}_{i}\right)+c_{i}\left(\dot{y}_{i}-\dot{z}_{i}\right)-\cdots-i f y_{i}-z_{i}<-h_{i}
\end{array}\right\} \quad \text { (13-18)} \\
& i=1 \ldots 6 \\
& \text { D2-83012-1 }
\end{aligned}
$$

Equations (7) through (18) are valid for cases where the spring force deflection characteristics can be expressed by linear functions. If this is not the case, the equations would be as follows:

$$
\begin{align*}
& S_{i}=F_{i}\left(u_{i}-y_{i}\right) \tag{7-12}\\
& V_{i}=G_{i}\left(y_{i}-z_{i}\right)+c_{i}\left(\dot{y}_{i}-\dot{z}_{i}\right) \tag{13-18}\\
& i=1-6
\end{align*}
$$

where F_{i} and G_{i} denote functions of the displacements ($u_{i}-y_{i}$) and (y $\left.y_{i}-z_{i}\right)$, respectively.

5.5.7 Equations of Motion for the Furward Unit

Figure 5.5 .9 shows all forces and moments acting on the free-body of the forward unit. The weight forces are:

W_{c}^{\prime}	weight component normal to the datum plane
$W_{c}^{\prime \prime}$	weight component in torward direction
$W_{c}^{\prime \prime}$	weight component in side direction

To urderstand the method of deriving the proper mass forces a simpie case is considered. Figure 5.5.10 shows the rompartment in a pitching mode. The rear and the front of the compartment can move only normally to the datum plane, according to the previous assumptions. Therefore, the mass is accelerated in the normal direction with $\ddot{\Xi}_{\mathrm{c}}$, in the forward direction with $q \dot{\theta}$, and arourd the axle A wih $\ddot{\theta}$. Accordingly, the mass forces are:

$m_{c} q \ddot{g r g}_{c}$,	inertia force in the forward direction
m q ¢ ${ }_{\mathrm{c}}$	inertia force in the side direction
$\mathrm{m}=\check{c}^{*}{ }_{c}$,	inertia force in the normal direction
$\mathrm{I}_{\mathrm{c}}{ }^{\circ} \mathrm{c}$	inertia moment in roll
	inertia moment in pitch

Figure 5. 5. 9- Forces and Momente of the Forward Unit

ALL POINTS ON THIS STRAIGHT LINE CAN MOVE only in dobinal direction. CONS EqUEMTEY, THE CENTER OE MASS ROTATION IS POINTA.

Figure 5. 5. 10-Inertia Forcee of Pitching Forwari Uni

From figure 5.5.9, the forces acting from the flexible frame are:
V_{c}, frame force normal to satua plane
M, pitch moment of frame
T_{c}, roll moment of farme

Frame forces in the side and forward directions are not considered in this study; it is assumed that these forces are counteracted within the compartments. Consequently, the forces $m{ }_{c} q_{q} \ddot{v}_{c}$ and $W{ }_{c}^{\prime \prime}$ acting in the sidf direction have to be courteracted by forces at the contact between the wheels and the ground. How theae counter forces are distributed is unknown. To simplify the problem it has been assumed that the side forces at the wheel contact points are equally distributed and, consequently, add up to the resultant force H_{c}^{\prime}, as indicated in Figure 5.5.9. Similar considerations hold for the forward forces $W_{c}^{\prime \prime}$, and $m_{c} a^{\ddot{a}}{ }_{c}$. These counter forces add up to $\mathrm{H}_{\mathrm{c}}^{\prime \prime}$, acting at a distance $\mathrm{r}=$ wheel radius from the compartment.

Forces stemming from the whecle are:

$$
V_{3} \ldots V_{6} \text { whesl assmbly forces in normal direction }
$$

The pitch limiter exerts a force P in the forward direction on the sorward unit. (The magnitude of this force will be derived later.)

The equations of equilibrim are then easily derived from Figures 5.5.7, 11 and 12.

Since the sum of all ferces in the forward direction equals zero,

$$
\begin{equation*}
m_{c} q \ddot{\theta}_{c}-W_{c}^{\prime \prime}+P-H_{c}^{\prime \prime}=0 \tag{19}
\end{equation*}
$$

Since the sum of all forces in the normal direction is zero,

$$
\begin{equation*}
v_{3}+v_{4}+v_{5}+v_{6}+v_{c}-w_{c}^{\prime}-m_{c} \ddot{z}_{c}=0 \tag{20}
\end{equation*}
$$

Since the sum of all forces in the side direction is a.ero,

$$
\begin{equation*}
H_{c}^{\prime}-m_{c} q \mathscr{g}_{c}+w_{c}^{\prime \prime}=0 \tag{21}
\end{equation*}
$$

Figure 5.5.11- Forces and Mornerts of a Rolling Forward Unit

Figure 5. 5. 12-Forces and Moments of a Pitching Forward Unit

Since the aum of all moments in the roll direction is zero,

$$
\begin{align*}
& \left(V_{3}+V_{5}\right) d_{3}-\left(V_{4}+V_{6}\right) d_{4}-\frac{d_{4}-d_{3}}{2} v_{c}-T_{c}-m_{c} q \ddot{\theta}_{c} \\
& \tag{22}\\
& +W_{c}{ }^{\prime \prime \prime} q-I_{c} \ddot{\theta}_{c}-H_{c}^{\prime} r=0
\end{align*}
$$

Since the sum of all moments in the pitch direction is zero,

$$
\begin{align*}
& V_{c} g+M_{c}+\left(V_{3}+V_{4}\right) a-\left(V_{5}+V_{6} B+I I_{c} \ddot{\theta}_{c}+\left(m_{c} q_{c} \ddot{\theta}_{c}-W_{c}^{\prime \prime \prime}\right) q\right. \\
& \quad+P \varepsilon_{c}+H_{c}^{\prime \prime} r=0 \tag{23}
\end{align*}
$$

5.5.8 Equations of Motion for the Aft Unit

Equations for the aft unit are derived in the same manner as for the forward unit (see Figures 5.5.13, 14, 15). The pitch and roll centers are always located at the axle.

In the forward direction,

$$
\begin{equation*}
m_{t} p \ddot{\theta}_{t}-W_{t}^{\prime \prime}-P-H_{t}^{\prime \prime}=0 \tag{24}
\end{equation*}
$$

In the normal direction,

$$
\begin{equation*}
v_{1}+v_{2}-v_{t}-w_{t}^{\prime}-m_{t} \ddot{Z}_{t}=0 \tag{25}
\end{equation*}
$$

In the side direction,

$$
\begin{equation*}
W_{t}^{\prime \prime \prime}-m_{t} p \ddot{\theta}_{t}+H_{t}^{\prime}=0 \tag{26}
\end{equation*}
$$

In roll,

$$
\begin{align*}
& V_{1} d_{1}+V_{t} \frac{d_{2}-d}{2}-V_{2} d_{2}-H_{t}^{\prime} r-m_{t} p^{2} \ddot{\theta}_{t}+W_{t}^{\prime \prime \prime} p+ \\
& T_{t}-I_{t} \ddot{\theta}_{t}=0 \tag{27}
\end{align*}
$$

In pitch,

$$
\begin{align*}
& -\left(V_{1}+V_{2}\right) f+V_{t}(f+s)+M_{t}+I_{t}^{*} \ddot{\theta}_{t}+m_{t} p^{2} \ddot{\theta}_{t}-W_{t}^{\prime \prime} p- \\
& \quad P E_{t}+H_{t}^{\prime \prime} r=0 \tag{28}
\end{align*}
$$

5.5.9 Equations of Motion for the Flexible Frame

The flexible frame connecting the two compartments is considered to be a massless, continuous beam of iniform crosa section loaded at the ends by:

Figure 5.5.13. Forces and Momente of the Aft Unit

Figure 5.5.14-Forces and Mornentio of a Rolling Aft Unit

Figure 5.5.15-Forces and Moments of a Pitching Aft Unit

- forces V_{c} and V_{t} acting in the normal direction
- moments M_{c} and M_{t} acting in the pitch direction

0 torques T_{c} and T_{t} acting in the roll direction

Forces in the forward and sice directions are not considered, as explained above. The beam can be defozmed by twisting in roll, by bending in pitch, and by moving the two beam ends in the normal direction. Because the angles and deflections are small, the principle of superposition ran be employed. Figure 5. 5. 16 shows how, by superpcsition of twu types of beam deflection, a general picture of bearn deformation without torsion can be achieved. The equations of equilibrium for this general case are:

$$
\begin{align*}
& V_{t}-V_{c}=0 \tag{29}\\
& -M_{t}-M_{c}+V_{c} \ell=0 \tag{30}
\end{align*}
$$

where

$$
\begin{align*}
& V_{t}=12 \frac{m}{\ell^{2}} \delta_{t}-12 \frac{m}{\ell^{2}} \delta_{c}+6 \frac{m}{\ell} \theta_{t}+\frac{6 m}{\ell} \theta_{c} \tag{3i}\\
& M_{t}=6 \frac{m}{\ell} \delta_{t}-6 \frac{m}{\ell} \delta_{c}+4 m \theta_{t}+2 m \theta_{c} \tag{32}
\end{align*}
$$

and

$$
\begin{equation*}
m=\frac{E I}{2} \tag{32a}
\end{equation*}
$$

The equilibrium of torquesis simply expressed by (see Fig. :6)

$$
\begin{equation*}
T_{c}-T_{t}=0 \tag{33}
\end{equation*}
$$

wher?

$$
\begin{equation*}
T_{t}=Q\left(\theta_{c}-\theta_{t}\right) \tag{34}
\end{equation*}
$$

Figure 5.5.16-Forces and Moments of the Elastic Frame

5.5.10 Equations of Motion for the Pitch Limiter

The relative pitch between the forward and aft units is limited by a pitch limiter as shown in Figure 5.5.17. It is essentially a linear spring with mubbers at both ends. The spring is attached at both compartments and is constantly engaged. To prevent the continuous storage and release of energy in the spring, damping is added. From the spring characteristics and the geometry of the limiter, the following equations can be simply derived:

$$
P=\left\{\begin{array}{l}
k_{p}\left(\theta_{c} \varepsilon_{c}-\theta_{t} \varepsilon_{t}\right)+c_{p}\left(\dot{\theta}_{c} \varepsilon_{c}-\dot{\theta}_{t} \varepsilon_{t}\right) \quad \text { if }-h_{p} \leqslant \theta_{c} \varepsilon_{c}-\theta_{t} \varepsilon_{t} \leqslant h_{p} \tag{35}\\
k_{p}\left(\theta_{c} \varepsilon_{c}-\theta_{t} \varepsilon_{t}\right)+k_{p}^{*}\left(\theta_{c} \varepsilon_{c}-\theta_{t} \varepsilon_{t}-h_{p}\right)+\varepsilon_{p}\left(\dot{\theta}_{c} \varepsilon_{c}-\dot{\theta}_{t} \varepsilon_{t}\right) \ldots \\
\text { if }-h_{p}>\theta_{c} \varepsilon_{c}-\theta_{t} \varepsilon_{t}>h_{p}
\end{array}\right.
$$

5.5.11 Geometrical Relationships

Other equations relating to geometrical relationships can be derived from the various vehicle dimensions:

$$
\begin{align*}
& \delta_{t}=z_{t}-\frac{d_{2}-d_{1}}{2} \theta_{t}+(\epsilon+f) \theta_{t} \tag{36}\\
& \delta_{c}=z_{c}-\frac{d_{4}-d_{3}}{2} \theta_{c}-g \theta_{c} \tag{37}\\
& z_{1}=z_{t}+f \theta_{t}+d_{1} \theta_{t} \tag{38}\\
& z_{2}=z_{t}+f \theta_{t}-d_{2} \theta_{t} \tag{39}\\
& z_{3}=z_{c}-a \theta_{c}+d_{3} \theta_{c} \tag{40}\\
& z_{4}=z_{c}-a \theta_{c}-d_{4} \theta_{c} \tag{41}\\
& z_{5}=z_{c}+b \theta_{c}+d_{3} \theta_{c} \tag{42}\\
& z_{6}=z_{c}+b \theta_{c}-d_{4} \theta_{c} \tag{43}
\end{align*}
$$

)

Figure 5. 5. 17 - Pitch Limiter

DZ-83012-1
Page 5-81

5.5,12 Human Tolerance to Vibration

The level of human tolerance to vibrations may limit the speed of the vehicle. Some of the most recent studies on this subject have been conducted by Pradko and others. * Figure 5.5 .18 shows the findings insofar as they are relevant to the problem of defining human tolerance to random vibrations. Pradko vibrated persons seated (without cushions) on a shake table in the vertical, pitch, and roll modes by means of white-noise vibrations filtered through a 2 cps band-pass filter. The pitch and roll center was located in the contact area between seat and subject, and the center frequency was varied between 3 cps and 30 cps .

The frequency range of interest for the LSSM lies between 0.3 cps and 4.5 cps , as was discussed under the oection on Terrain. From Figure 5.5.18 we estimate that in this frequency range the RMS levels of human tolerance to random vibrations will be:

- Vertical - $0.25 \mathrm{~g}\left(100 \mathrm{in} / \mathrm{sec}^{2}\right)$
- Pitch $-6 \mathrm{rad} / \mathrm{sec}^{2}$
- Roll - $9 \mathrm{rad} / \mathrm{sec}^{2}$

The pitch and roll tolerances cannot be applied immediately to our problem because the pitch and roll axes of the LSSM are not located at the seat. The actual locations of the pitch and roll axes of the forward unit chang with time. but very likely they may be found most of the time beneath the center of gravity in the plane of the wheel axles. To transfer Pradko's data to a rotation center located at a certain distance from the seat, it was assumed that the hips of the seated person exactly follow the motions of the rotating chair, as if this part of the body were connected rigidly to the seat.
> * F. Pradko: Human Tolerance to Random and Sinisoidal Acceleration, U.S. Army Tank Antomotive Command, Research and Engineering Directorate, 1965
> * F. Pradko and R. A. Lee: Vibration Comfort Criteria, Society of Automotive Engineers Paper 660130, January 1966

Figure 5, 5. 18 - Human Tolerance of Rangom Vibration

As the distance from the seat to the hips is approximately 0.7 ft , the horizontal acceleration of the hips ascociated with the tolerable pitch acceleration of $6 \mathrm{rad} / \mathrm{aec}^{2}$ is $(0.7)(6)=4.2 \mathrm{ft} / \mathrm{sec}^{2}$. If a distance of 2.7 ft . is assumed between the hips of the driver and the pitch and roll center of the LSSM (see Figure 5.5.19), the ame horizontal acceleration for the case of the LSSM would be attained at a pitch acceleration of $(0.7)(6) /(2.7)=1.6 \mathrm{rad} / \mathrm{s} \mathrm{sc}^{2}$. In the case of roll, the tolerance level would be $2.3 \mathrm{rad} / \mathrm{cec}^{2}$.

To summarize, the following values can then be taken to represent the tolerance levels to random vibrations of an LSSM driver.

- Vertical - $100 \mathrm{in} / \mathrm{sec}^{2}$ (RMS)
- Pitch - 1.6 rad/ sec^{2} (RMS)
- Roll - $2.3 \mathrm{rad} / \mathrm{sec}^{2}$ (Rins)

These nurnbers represent performance on Earth, and how they might change in the low gravity field on the moon is unkacon. Because the lunar gravitational acceleration of $65 \mathrm{in} / \mathrm{sec}^{2}$ is less than the human tolerance to vertical vibrations on earth, it is conceivable that the tolerance level to vertical vibrations may be decreased considerably on the moon. The other two tolerance values may be unchanged on the moon because gravitational effects are not involved in essentially horizontal motions.

5.5.13 Vehicle Performance Evaluation

As was stated previously, the main objectives of this dynamics analysis program we e to:

- Optimize the suspension system from the point-of-view of vehicle dynamic performance.
- Determine the influence of apeed and terrain roughness.
- Compare rigid and flexible wheels and evaluate effect of eliminasing the suapension system.
- Evaliuate the transient respense and stability of the LSSM whan operating over "bunps".

In order to achieve the above, it was consiciered necessary to assess the following elements of vohicle zeuponse:

Figure 5.5.19-Transformation of Pitch and Roll Center

- The percentage of time one wheel or both wheels on one axle lose contact with the ground. (This information can be considered a measure of the controllability of the vehicle.)
o The root-mcan-square (Ims) values of the vertical accelerations of the centers of gravity (cg) of both unite.
- The root-mean-square (rms) values of the pitch accelerations of both units.
- The root-mean-aquare (rms) values of the roll accelerations of of both units. (These acceleration data permit an estimate of the ride cornfort.)
o The damping power dissipated by the dampers of the wheel suspensions. (This is an important part of the power requirements of the vehicle.)
- The percentage of time the force between a wheel and the ground surpasses a certain limit. (This provides structural desiga information.)

The rms-values of accelerations were computer in a simplified manner by assuming that the accelerations were normally discributed even if wheel bottoming or wheel lift-offs occur. The asaumption of norrial distribution proved to be acceptable in all caser that were checked-out. Thus the rms-values could be computed by fully rectifying the output signal, smoothing it, and multiplying it by a constant factor of $\sqrt{\frac{\pi}{2}}$.

5.5.14 Vehicle Daia for Computer Progran

The LSSM vehicle data used for the dynamic performance analysis is listed below. In actuality, computer programs were coniucted for vehicle masses of 2400 lbm and 1890 lbm . However, the 2400 lbm case was investigater carly in the LSSM study, before vehicle characteristics vere well-defined. Furthermore, the 1800 lbm vehicie underwent a mach more thorough analysis. In any event no significant difference in resulte was discerned between the two cases. For these reasons, the program corducted with the 1000 ibm ISSM is reported here. Although a design iteration carried out after the completion of the dynamirs; study resulted ire a fully - loaded LSSM with an eatimated mass of 2170 lmm , it is felt that the results reported herein are reabuntily appicable.

$$
\begin{aligned}
& \text { D2-83012-1 } \\
& \text { Page } 5.86
\end{aligned}
$$

Dimensions (inches)		Lunar Weights (lb)
a,	29.3	W_{c} (sprung), 160
b,	28.7	W_{t} (sprung), 80
$\mathrm{d}_{1}-\mathrm{d}_{4}{ }^{\text {, }}$	41.0	$\mathrm{W}_{1}-\mathrm{W}_{6}$ (unsprung), 10
e	25	
Dimensions (inches)		Masses (sec $\left.{ }^{2} \mathrm{lb} / \mathrm{in}.\right)$
f,	-1.5	m c
g,	38.3	İ, 1.24
1,	28	t° (${ }^{\text {a }}$
p,	9.5	$\mathrm{m}_{1}{ }^{-\mathrm{m}_{6}}$, 0.155
$\begin{aligned} & q, \\ & r, \end{aligned}$	14.7	
	20	Mass Moments of Inertia (in lb sec ${ }^{2}$)
		I_{c} (roll) 739
		I_{c}^{*} (pitch) 1831
		I_{t} (roll) 346

The mass moments of inertia listed arove include the sprung masses plus suspensions. In addition to the above values, the following were also used:
o Moment of inertia of flexible frame, $I=0.0115$ in 4

- Torsional raze of flexible frame, $Q=16,900 \mathrm{in}$. $1 \mathrm{~B} . / \mathrm{rad}$.

The suspension spring characterjstics considered are shown in Figure 5.5.20. The spring characteristics of the wire frame wheel are shown in Figure 5.5.21.

5.5.15 Optimixation of Suspension Springs

27 computer runs were conducted at various spring rates and vehicle speeds (see Figure 5.5.22) in order to find the rate assosiated with the 'best' vehicle ride. The 'best' vehicle ride was considered to be a ride with low accelerations of the forward unit (ride comfort) and a small percentage of wheel lift-ofis

D2-83012-1
Page 5-87

Figure 5. 5, 20-Spring Characteristic of Wheel Suspension

Figure 5.5.21 - Spring Characteriatic of Wheel Frame

$$
\begin{aligned}
& \text { D2-83012-1 } \\
& \text { Page 5-89 }
\end{aligned}
$$

Figure 5.5.22-Computer IUun Scheduie for Optimization of Suspension Spring Rates
(controllability). The spring rates of the forward unit and tine aft unit were varied independently. The terrain used for all runs was the l-ft terrain, which approximates the Mare Cognitum profile and, therefore, was considered to be most meaningful for the optimization process. During all runs the level of suspension damping rate was fixed arbitrarily at $4 \mathrm{lbsec} / \mathrm{in}$ which later turned out to be close to the optimum damping rate.

The results were plotted in a condensed form as averaged, normalized, and combined vertical, pitch and roll accelerations and wheel lift-offs versus the spring rate. Figures 5.5. 23 and 5.5.24 show the results for the forward and aft units respectively. The "optimum" spring rate appears to be in the vicinity of $10 \mathrm{lb} / \mathrm{in}$. for both cases. However, due to the relative flatness of the curves, somewhat stiffer springs would not noticeably degrade performance.

5.5.16 Optimization of Suspensicn Dampers

The optimization of the suspension dampers followed a procedure similar to that for the springs. Again the l-ft terrain was used for all runs. The suspension damping rate of both forward and the aft units was varied over the range between 0.5 and 10 lb seciin. Vehicle speeds used were 5.0 and $10.0 \mathrm{it} / \mathrm{sec}$. During all runs the suspension spring rate was fixed at $10 \mathrm{lb} / \mathrm{in}$. The results are plotted in Figures 5.5.25 and 26. Fc: both units, a flat optimum lies between 3 and $5 \mathrm{lbsec} / \mathrm{in}$.

5.5.17 Vehicle Response as a Function of Spead and Terrain

Having optimized the spring and damping rates of the velicle suspensions, it was now possible to estimate vehicle dynamic performance c: different terraine at various speeds.

Vehicle runs were aimulated over random terrain with two degrees of roughness (1 ft and 0.5 ft rms) and over two obstacle terrains (heights 1 in . and .5 in). Runs were conducted at three velocities: $5 \mathrm{ft} / \mathrm{sec} ; 10 \mathrm{ft} / \mathrm{sec}$; and $15 \mathrm{ft} / \mathrm{sec}$.

Additional runs were made using rigid wheels on both the random and the obstacle

> D2-83012-1
> Page 5-91

Figure 5. 5. 23 - Spring Optimization of Subpension Forward Unit

D2-83012-1
Puse 5-92

Figure 5.5.24-Spring Optimization oi Suspension Aft Unit

Figure 5.5.25-Damper Optimization of Forward Unit

D2-8.30;2-1
Page 5..94

Figure 5.5.26-Damper Optimization of Aft Unit

D2-83012-1
Page 5-95
terrains to study the effect of terrain-wheel impact as a function of whel flexibility. A few runs were also made with the vehicle stripped of all suspensions.

Figures 5.5 .27 to 5.5 .33 illustrate the performance characteristics of the forward and aft units of the vehicle with suspension and tlexible wheels over the 1.0 ft rms random terrain.

Figure 5.5.27: Percent of time either one front whel of the forward unit or both front wheels of the forward unit are off-the-ground, as a function of speed. Percent of time either one wheel of the aft unit or both wheels of the aft unit are off-the-ground, as a function of speed. The wheels of the forward unit are loosing contact with the ground a little more often than the wheels of the aft unit. At a speed of $10 \mathrm{ft} / \mathrm{sec}$ the two front wheels of the forward unit and the two wheels of the aft unit arc off-the-ground about 10% of the travel time. This may signify the limit of effective controllability of the vehicle.

Figure 5.5.28: rms of vertical accelerations of the c.g. of the forward and aft units, as a function of time. The accelerations do not reach the human tolerance level on earth of approximately $100 \mathrm{in} / \mathrm{sec}^{2}$ (rms), even at the maximum speed of $15 \mathrm{ft} / \mathrm{sec}$.

Figure 5. 5. 29: rms of pitch accelerations of forward and aft unit, as a function of speed. The human tolerance level on earth is reached at a speed of about $13 \mathrm{ft} / \mathrm{sec}$.

Figure 5.5.30: rms of roll accelerations of both units as a function of speed. The human tolerance level on earth is never reached.

Figure 5.5.31: Marimumi angle between the two units as a function of speed. If the maximum allowable angle between the two units is, for instance, 15°, it is reached at a speed of $9 \mathrm{ft} / \mathrm{sec}$. This is for the case where no pitch limiter is incorporated. If higher speeds are desirable, a pitch limster should be provided.

Figure 5.5.27-Ride Performance of Optimized Vehicle On Random Terrain: Wheel Sift-Offs

D2-83012-1
Page 5-97

Figure 5.5. 28 - Ride Performance of Optimizgd Vehicle Un Rardom Terrain: Vertical Accelerations

Figure 5. 5. 29 - Ride Performance of Optimized Vehicle On Random Terrain: Pitch Acceleration

Figure 5. 5. 30 - Ride Performance of Optimizcd Vehicle On Random Terrain: Rcll Acceleration

Figure 5.5.31-Ride Ferformance of Optimized Veliicle On Random Terrain: Maximum Angle Betwen Units

D2-83012-1
Page 5.101

Figure 5.5.32: disaipated damping power at one front wheel as a function of speed. This information was utilized to help determine total energy required for locomotion.

Figure 5.5.33: The percentage of time the force detween wheel and the ground is greater than a certain force depends on the epect of the vehicle. At a force of 100 lb , which is rowithy the force where the inner frame of the wheel becomes active, we can see that at $5 \mathrm{ft} / \mathrm{sec}$ the invier irame is engaged only 3% of the time. At $10 \mathrm{ft} / \mathrm{sec}$ it is engaged 30% of the time and at $15 \mathrm{ft} / \mathrm{sec} 45 \%$ of the time. These numbers indicate the difficulties of reconciling low lunar weights and high mass forces (which do not change with gravity).

Summarizing the above resulta, it appears that the maximum syeed on randorn terrain of the Mare-Cognitum type of the LSSM vahicle with optimized suspension and flexible wheels would be approximately $10 \mathrm{ft} / \varepsilon e c$. At higher speeds the wheels leave the ground more than 10% of the time, the human tolezance level for pitch accelerations is reached, and the angle between the two urits surpasses 15°.

Figures 5.5.34 to 5.5 .37 compare the response of the forward unit equipped with three different wheel-buepension combinations operating on random terrain (1 ft and 0.5 ft rms). The three combinations are: susperder flexibie whecl; suspended zigid whecl; and non-suspended flexible wheel.

Figure 5.5.34: percentage of time one front whel of the forward unit is off-the ground as a function of speed, wheel-subperision combinetion, and terrain rough ness. On both terrains the ron-suspended wheel performs worst; the suspended, flexible wheel performs best. The same is true for

Figure 5.5.35: percentage of time beth front wheels of the formitd unit are off-the-ground as a function of speed, wheel type, and terrain roughness. If 10% of the time off-the-ground the limit of maximum effective controllability, the upper speed limit of the velicle with unsuspendeci wheels un random terrain with 1.0 ft mm would be $6 \mathrm{ft} / \mathrm{sec}$, whereas on the eame terrain, the vehicle

Figure 5.5.32-Rico Performance of Optimized Vehicle On Random Terzain: Damping Power

[^0]

Figure 5.5. 33 - Mide Performance of Optimized Vehicle

Figure 5. 5. 34 - Ride Performance of Three Wheel Types On Random Terrain: Wheel Lift-Offa

Figure 5. 5. 35 - Rice Performance of Three Wheel Types on Random Terrain: Wheel Lift-Offs
with suspended, flexible wheels could go at $10 \mathrm{ft} / \mathrm{sec}$.

Figure 5.5.36: rms of vertical acceleration of the forward unit as a function of speed, wheel type, and terrain roughness. The figure indicates clearly the superiority of the suspended wheel over the unsuspended wheel.

Figure 5.5.37: rms of pitch acceleration of the forward unit as a function of speed, wheel type, and terrain roughness. On both terrains the vehicle with suspended wheels performs better than one with non-suspended wheels. On the $1-f t$ terrain, in the case of the non-suspended wheel, the human tolerance level is surpassed at a speed of $6 \mathrm{ft} / \mathrm{sec}$, whereas for the suspended wheel, be it rigid or flexible, the tolerance level is reached at $14 \mathrm{ft} / \mathrm{sec}$.

Based on the above results, it can be concluded that a suspended wheel allows higher speeds and gives a smocther ride than the non-suspended wheel. The performance differences between the rigid and flexible wheel, both suspended, are small. This is not surprising because the random terrain wavelengths are much larger than the wheel footprint. The differcrice in performance between these two wheels can be assessed more distinctly on terrain with obstacles smaller in size than the footprint. In this latter case the flexible wheel would tend to exvelop the obstacle whereas the rigid whecl would follow the terrain contour, thus developing rather high accelerations and forces.

The comparison between rigid and flexible wheels is demonstrated in Figures 5.5 .38 to 41 . The vehicle was operated over terrain with periodic, small triangular obstacles (lin. and 0.5 in. high). Again with the suspended flexible wheel, the suspended rigid wheel, and the non-sispended flexible wheel were compared.

Figure 5. 5. 38: percent of time both front wheels of the forward unit are off-the-ground, as a function of speed, obstacle height, and wheel type. The rigid wheel is off-the-ground most of the time whereas the soft wheel never loses cortact, even at the maximum speed of $15 \mathrm{ft} / \mathrm{sec}$.

RMS VERTICAL ACCELERATION OF FORWARD UNIT (CG; (in. $/ \mathrm{sec}^{2}$)

Figure 5. 5. 36 - Ride Performance of Three Wheel Types on Random Terrain: Vertical Acceleration

Figure 5. 5. 37-Ride Performance of Three Wheel Typas on Randorn Terrain: Plich Acceleration

Figure 5. 5. 38 - Ride Performance of Three Wheel Types on Obstacle Terrain: Wheel Lift-Ofis

D2-83012-1
Page 5-110

Figure 5.5.39: rms of vertical acceleration of the cg of the forward unit as a function of speed, obstacle height, and wheel type. The vertical acceleration in the case of the rigid when is an order-of-magnitude higher than vertical acceleration for the soft suspended wheel. The flexible, non-suspended wheel also results in rather high accelerations.

Figure 5.5.40: rms of pitch acceleration of the cg of the forward unit as a function of speed, obstacle height, and wheel type. The acceleration for the rigid wheel exceeds the human tolerance level at all speeds, whereas the flexible suspended wheel develops very small accelerations. The performance of the flexible wheel without suspension is also unsatisfactory.

Figure 5. 5.41: peak forces between the front wheels of the forward unit and the ground as a function of speed, obstacle height, and wheel type. This figure demonstrates the excessively high peak forces for the rigid wheel, caused by continuously impacting the ground.

Thus, it can be concluded that the suspended flexible soft wheel out performs both the rigid wheel and the non-suspended whesl by far. On a random terrain of the Mare-Cognitum type a suspended wheel permits 4 to $8 \mathrm{ft} / \mathrm{sec}$. higher speeds than an non-suspended wheel; on a terrain with obstacles smaller than the footprint, rigid wheels would bounce continously and develop very high impact forces.

5.5.18: Dynamic Stability on Slopes

On the moon, weight forces are one-sixth as latge as on earth. Consequently, niass forces, spring forces and lamping forces dominate vehicle performance on the moon. The interplay between these forces dotermines the smoothness of the ride and the controllability of the vehicle, as has been demonstrated in this study.

Besides smootiness of ride and controllability, another dynamic criterion should be considered $a 8$ vital for safe and setisfactory velicle performance; that is,

D2-83012-1
Page s. 111

Figure 5.5.39-Ride Performance of Three Wheel Types D2-85012-1 on Obstacle Terrain: Vertical Acceleration

Figure 5. 5. 40 - Ride Ferformance of Three Wheal Types on Obstacle Terrain: Pitch Acceleration

Figure 5.5.41 - Ride Performance of Thiee Wheel Types on Obstacle Terrain: Nheel-Ground Force

D2-83012-1
Page 5ull4
dynamic stability. Because mass, spring, and damping forces on the moon are counteracted only by small weight forces, a lunar vehicle is subject to greater instability than a terrestrial vehicle.

The stability of the vehicle has rot been dealt with thoroughly in this study because it requires a mathematical model based on real angles and not on small angles. At small angles, the vehicie is supposedly always stable; instability, however, can be studied even if the vehicle model is based on the small-angle assumption by initiating a transition stage for the vehicle and observing the wheel lift -offs. It can be assumed that if the wheels leave the ground during the transition for a long period of time, the vehicle may $k=$ considered to be in an unstable condition. This, of course, is a crude procedure and cannot repiace a serious computation based on real angles; however it will indicate the range in which instabilities may occur, and possibly, form a basis for a more exact study.

The following estimate of vehicle stability is based on a transition time of 10 ic 20 seconds; if within this time period the wheels lose contect for more than 2 to 3 seconds, we consider the yehicle to be in a state of instability.

To affect a transition time of 10 to 20 seconds, the vehicle was assumed to be traveling on a slope and hitting a bump as was pictured in Figure 5.5.4. Two cases were considered: a front slope with a bump contacting both whecls of an axle simultaneously, and a side slope with a bump contacting the upper wheels of the vehicle.

Computer runs were conducted at two vehicle speeds ($4 \mathrm{ft} / \mathrm{sec}$ and $15 \mathrm{ft} / \mathrm{sec}$), three slope inclinations $\left(0^{\circ}, 15^{\circ}, 30^{\circ}\right)$, and two burne heights ($1 \mathrm{ft}, 2 \mathrm{ft}$).

The computer results presented in Figures 5.5. 42 to 47 are not immediately applicable to LSSM pexformance because they were ctained for a lunar vehicle three times heavier than the LSSM (MOTAB - with a lunar weight of $2,200 \mathrm{ibs}$). However, dimensional analygis, based on the use of Froude and Cauchy numbers, indicated that the stability of the LSSM will be about the eame as that of MOLAB.

Figures 5.5.42 to 5.5.45: Wheel lift-off and wheel-ground force for the forward and aft units for two step heights and two speeds, as a function of time. These figures are traces of computer records selected as typical specimens of the changing wheel-ground forces during the transjition stage. After hitting the bump the wheel-ground force first increases to a maximum, and then decreases to a minimurn which is zero when the wheel leaves the ground. If the wheel leaves the ground for longer than two seconds the vehicle is assumed to be in a state of instability. A striking example of instability is shown in Figure 5.5.45, where the vehicle on a front slope hits a bump 2 ft high with a speed of $15 \mathrm{ft} / \mathrm{sec}$.

Figures 5.5.46 and 5.5.47: These figures are an attempt to find stability limits as a function of speed, bump height, and slope angle. Fox example, if the vehicle hits a bump 2 ft high with one wheel on the horizontal plane ($\beta=0^{\circ}$), it may become unstable at speeds greater thar $10 \mathrm{ft} / \mathrm{sec}$. If it hits the same bump with two wheels simultaneously $\left(\alpha=0^{\circ}\right)$, it becomes unstable at a lower speed, that is at $6 \mathrm{ft} / \mathrm{sec}$. The same bump on a side alope, tilted only 15° reduces the speed to 6.5 ft sec , whereas the burnp on a front slope with $\alpha=15^{\circ}$ limits the allowable speed to $4 \mathrm{ft} / \mathrm{scc}$.

These may suffice to demonstrate the imporance of dynamic stability investigations. Correctly executed they will yield a strong criterion for the evaluation of lunar vehicle performance.

Figure 5.5. 42 - Vehicie on a Side Slops: Wheol Lift-Off and Wheel Force - Gpeed - $4 \mathrm{ft} / \mathrm{sec}$

Figure 5. 5. 43 - Vehtcle on a Side Slope: Whesl Lift-Off and Wian Force - Speed - 15 fi/sec

Figure 5.5.44-Vehicle on a Fiont Slope: Wheol Lift. Off and Whesl Force $-S_{1}$ pesd $-4 \pm t \sec$

Figure 5. 5. 45 - Vehicle on Frozt Slope; Wheal Liti-Oif and Whacl Force - Spead - $15 \mathrm{ft} / \mathrm{sec}$

Figure 5.5.46-Roll Stablity on Stie Slope

[^1]

Figure 5.5. 47 - Fitch Stability on Front Slope

5.6 LSSM MOBILITY PERFORMANCE SUMMARY

5.6.1 Soft Soil Mobility

The LSSM mobility capabilities over the specified ELMS and Annex G goils are summarized in the following table. It can be seen that the baselire LSSM can negotiate all apecified conditions with a comfortable margin of safety.

ELMS MCDELS		LSSM PEREORMANCE		
Slope Degrees	Soil Values	Motion Resistance	DP/W	Slope Capa - bility, Degrees
$\begin{aligned} & 0^{0} \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 0=32^{\circ} \\ & k=0.5 \\ & n=0.5 \end{aligned}$	$\begin{aligned} & 31.7 \\ & 38.1 \\ & 44.4 \\ & 50.6 \\ & 56.9 \end{aligned}$	0.52	27°
$\begin{array}{r} 5 \\ 7.5 \\ \hline \end{array}$	$\begin{aligned} & n=32^{\circ} \\ & k_{n}=1.0 \\ & n=0.75 \end{aligned}$	53.2 68.8	0.55	28°
$\begin{gathered} 10 \\ 12.5 \\ 15 \\ 17.5 \\ 20 \\ \hline \end{gathered}$	$\begin{aligned} & 0=32^{\circ} \\ & \mathrm{k}_{0}=3.0 \\ & \mathrm{n}=1.0 \end{aligned}$	$\begin{array}{r} 80.0 \\ 95.3 \\ 110.5 \\ 125.4 \\ 140.2 \end{array}$	0.56	29°
25	$\begin{aligned} & n=32^{\circ} \\ & k_{n}=6.0, n=1.25 \end{aligned}$	168.0	0.58	30°
$\begin{aligned} & 30 \\ & 30 \\ & 35 \end{aligned}$	hard surface $M=0.8$	$\begin{aligned} & 193.6 \\ & 219.6 \end{aligned}$	0.76	37°
ANNEX G SURFACE MODEL				
0°	$\begin{aligned} & \theta=20^{\circ} \\ & k_{0}=0.05, n=1 \end{aligned}$	85	0.13	$7.5{ }^{\circ}$

5.6.2 Obytacle Performance

The LSSM has a high degres of capability over all types of obstacles specified in Annex G. Step height capmbility is 51 inchea (130 cm) as compared to the wheel diameter of 40 inches; crevice creaning capability is 56 inches (142 cm).

These valuet are appreciably greater than conventional rigid frame vehicles are capable of.

5.6.3 Maneuverability

Steering: The minimum wall-to-vall turning radius for LSSM is 18.9 ft (6.1 meters) as compared to an overall vehicle length of 13.3 ft (4.1 meters). This provides extremely good maneuvering capability. The amount of off-tracking nf the vutside whecls at the minimum turn radius was only 9 inches (23 cm), less than the width of a wheel.

Braking: Minimum stopping distances were calculated as functions of speed and surface conditions. It was shown that in deformable soils, the stopping distance greatly depends on the soil shearing characteristics; that is, the lower the shear strength the greater the distance required. In any case, vehicle velocity must be limited on the moon due to the face that stopping distances will be six times greater than on earth for equivalent surfare conditions.

Vehicle Stability: Calculations indicate that the LSSM will be stable under all reasonable conditions. From the static stability point-of-view, the veliche will not overturn in roll unless slope angles exceed 52°; for overturning in pitch this value in 62°. For the more cxitical case of mancuvering on continuous cide slopes, it was determined that for all conditions specified in ELivis, the vehicle will slicie rather than overturn. In either the roll or pitch modes, the LSSM will not becone unstable while maneuvering unless the coefficient of friction is significantly greater than 1.0 .

5.6. 4 Dynamic Performance

Results of a computer program ride analysis were used to help determine the design ranges of suepenaion spring and damping rates. Rates established were $15 \mathrm{~L} /$ in $(26 \mathrm{~N} / \mathrm{cm})$ for the aprings and $50 \mathrm{lbsec} / \mathrm{t}(730 \mathrm{Nsec} / \mathrm{cm})$ for the damper. Results of studies performed for random terrain with a power - apectral dengity diatribution aimilar to that deduced from Ranger 7 photo-
graphs, and over small discrete bumps, indicated that from the ride point of -view flexible wheels are greatly superior to rigid wheels, and that it is important that suspensions be incorporated in the LSSM design.
5.6.5 Summary

A summary of the saiient LSSM performance characteristics is given in the chart of Figure 5.6.1.

6. 0 CONCEPTUAL DESIGN OF BASELINE LSSM MOBILITY SYSTEM

This section of the report discusses and describes the baseline LSSM mobility system and its major subsystems. These include:

- Wheel assemblies
o Wheel drive mechanisms
- Suspension systems
- Stecring mechanisms
- Chassis-Frame assembly
o Electric drive system

6.1 OVERALL MOBILITY SYSTEM

6.1.1 Introduction

The purpose of the LSSM mobility system is to function as a highly mobile platform capable of negotiaing the soils, elopes and obstacles of the lunar surface, while providing maximum probability of crew safety and misaion auccess. Since the characteristics of the lunar surface are still largel) unknown (or least open to debate), a major design objective was to provide a system capable of high mobility performance over as wide a range of possible suriace conditions as possible.

Another major design objective was to achieve simplicity to reduce develof ment costs, consistent with performance and reliability requirements and mass and erivelope restraints.

6. 1.2 Requirements

Requitements established for the mobility system design were as follows:
(1) Compatibility with the lunjr thermal and vacuum environment.
(2) Ability to withstand lcads imposed during launch, transit, landing and operation over the lunar surface. (These are described in

D2-83012-1
Page 6-1

Boeing Document D2-82068, MOLAB Structural Design Criteria)

(3) Wherever feasible, provide redundancy in critical subsystems. Ability to accommodate an astronaut-driver and any necessary communications, navigation, power and thermal systems, and transport 600 to 700 lbm of scientific equipment. It should also be able to accommodate a second astronaut in place of the cargo. When fully loaded, the LSSM vehicle should have the speed capability of $16 \mathrm{~km} / \mathrm{h}$. (10 mph) over smooth, level, hard ground and at least $5 \mathrm{~km} / \mathrm{hr}(4.1 \mathrm{mph})$ in level soft soils ($\mathrm{k}_{\mathrm{g}}=0.5, \mathrm{n}=0.5$). Ability to negotiate all surface conditions specified in ELMS. Average speed over the ELMS profiles should be at least $5 \mathrm{~km} / \mathrm{hr}$ (4.1 mph).
(8) Ability to negotiate a step obstacle at least 40 inches (101 cm) high. Angles of approach and departure should be at least 90 degrees. Provide as comfortable a ride as possible for the astronaut.
6.1.3 Mobility System Description

The LSSM mobility system, shown in Figure 6. 1.1, incorporates a chassis-freme assembly, essentially identical parallel arm suspensions at all wheels, individual wheel drive mechanisms, identical steering mechanisms for the forward and aft wheels, and flexible wire frame wheels. Control electronics for driving and steering are located in a thermal compartment on the aft unit.

The chassis-frame assembly consists of forward and aft unit frames, and a flexible frame and pitch limiter located between the two units. The frames are box structures on which appropriate fittings are located for suspension, flexible frame, crew station, scientific payload, thermal compartment and stowage attachments. Two main structural members near the center of the boxes provide the main load path, aad are also the track support on the forward unit for retracting the flexible frame for stowage. The flexible frame consists of eight thin-walled tubes, connecting the forward and aft units, which permit the units

fabt gection

$$
\text { C. }-3-1
$$

صum,

Figure 6.1.1 - Assembly, Mobility Subsystems,
D2-830i2USM

Page 6-3
to roll and pitch relativn to each other. The pitch limiter essentially consists of two concentric tubes sliding on each other and is designed to limit relative movement between the forward and aft units, and prevent overstressing of the flexible frame when negotiating severe obstacles.

The parallel arm suspension assemblies are essentially identical at all six wheels. Each consists of welded tubular steel upper and lower arms, damper/ stop assembly and torsion bar spring element. The torsion bar is located longitudinally between the chassis attachments for the upper suspension arm. The damper is of the linear dash-pot type with electrical heating elements to maintain nec:ssary fluid temperature, and is located between the lower arm chassis attachment point and upper arm wheel attachment point. The suspension is designed for a total vertical travel of 25.4 cm (10 in .).

The individual wheel drive assemblies are mounted at the wheel hubs and include a harmonic drive, spur gear reduction, brakes, declutching mechanism, electric drive motor and radiator. The narmonic drive provides the major portion of the necessary speed reduction between motor and whed as well as providing a hermetic seal for the high speed parto. Driving action of the wheel is accomplished through the following sequence: motor output - wave generator - flexspline - circular spline - intermediate pinions - ring gear - wheel hub. Locating the intermediate pinions between the circular spline of the harmonic drive and the ring gear on the wheel hub permits placing the passive radiator outboard of the wheel disc. The service brake is a conventional duo-eervo two-shoe brake actuated by a pilot shoe assembly which in turn is actuated by a solenoid. For parking, manual actuation of the solenoid armature is substituted for electrical actuation, through a push-pull cable. For parling purposes it is contemplated that only the brakes of the forward unit wheels will be applied. Declutching of the wheel from the drive emergency operation is also accomplished manually by a release device that disengages the ring gear from the wheel hub.

The electric drive motors are of the three-phane squirrel cage induction type. Torque and speed are varied by controlling motor frequency, slip and current by means of transistorized inverter - modulators. Threc motors on one side of the vehicle are controlled by one inverter - modulator. All electronics for the electric drive system are located in the aft unit thermal compartment.

The drive system is capable of producing wheel torques as follows: $89 \mathrm{~m}-\mathrm{N}$ ($120 \mathrm{lb}-\mathrm{ft}$) at a wheel speed of 2 rpm (maximum intermittent), $51 \mathrm{~m}-\mathrm{N}$ ($69 \mathrm{lb}-\mathrm{ft}$) at 5 rpm (maximum coninuous), and $4.5 \mathrm{~m}-\mathrm{N}(6 \mathrm{lb}-\mathrm{ft})$ at 92 rpm (maximum vehicle speed of $16 \mathrm{~km} / \mathrm{hr}$).

The Ackermann steering actuators for the forward and aft wheels are essentially identical. Each consiste of a cross-link assembly, housing, connccting links to the wheels, ball-nut input and an electric motor assembly with a spiroid gear output. The two mechanisms are synchronized by means of a flexible shaft connecting the two. A manual emergency oteering capability is provided for the forward actuator.

The wheels consist of the following basic elements: wheel disc, rin, flexible woven wire outer frame, etiff inner frame to limit wheel deflections due to impact loads, and a tread to provide a bearing surface. The wheels are 10i. 6 cm (40 in.) in diameter with a section width of $25.4 \mathrm{~cm}(10 \mathrm{in}$.$) and are designed$ to have a static deflection of about $4.3 \mathrm{~cm}(1.67 \mathrm{in}$.) at nominal wheel load.

The general characteristics of the LSSM mobility systems are given in Figure 6.1.2.

The estimated mass breakdown for the mobility system is given in Figure 6.1.3.

OVOML159674	
OETELIMIDTA	$22 \mathrm{CM}^{(32 \mathrm{IN} .1}$
Whe dimiger	$101.6 \mathrm{Cm}(00 \mathrm{IN}$.
5.6at bubti	$25.4 \mathrm{Cm}(12 \mathrm{If}$.
Wha Denection (at ronhmuk Lond	4.3 Cm 1.67 1\%.)
HiEs CASE	
VTEL TREAD	COTCH 2 Na .1
CrmbTh Clenramice	45.70463 M
	$35.5161 .9 \mathrm{CH}(1415.51 \mathrm{~A}$. 132.10.a $52 \mathrm{iN}$.
AWiL Of APPICORCH	$5^{6}+$
	$0^{5}+$
EASIC PLATFORM AREA - TOTAL	$4.61 \mathrm{M}^{2}$ (48.6 FT^{2})
Fonwhm Unit	$3.56 \mathrm{M}^{2} \mathrm{B8.3F}^{2}$
AETUETT	$1.65 \mathrm{H}^{2}\left(11.3 \mathrm{FT}^{2}\right)$

[^2]| | LBM | KG |
| :--- | :---: | :---: |
| Wheel Assembly (6) | 180 | 82 |
| Wheel Drive System (6) | 132 | 60 |
| Suspension System (6) | 60 | 27 |
| Steering Mechanism (2) | 34 | 16 |
| Forward Unit Frame | 86.5 | 39 |
| Flexible Frame (w/Pitch Limiter) | 10.5 | 5 |
| Aft Unit Frame | 62.5 | 28 |
| Electronics for Driving \& Steering | 37.5 | 17 |
| | | 603 |
| | | 274 |

Figure 6.1.3-LSSM Mobility System Mass Breakdown

6.2 WHEEL ASSEMBLY

6.2.1 Introduction

The wheel design for LSSM, or for any off-road venicle, affects mobility over both soft ground and cbstacles, energy requirements, stability, and vehicie ride and hardling characteristics, as well as drive train and motor design.

Because the character of the lunar surface is largely unknown, it is necessary that the wheels be capable of providiag an acceptable degree of performance over a wide range of terrain conditions ranging from deep, loose soils to hard, rough ground and over obstacles and slopes. Rigid wheels, while simple in concept, are considered unacceptable for this application from the viewpoints of both soft and rough terrain performance.

In soft ground, rigid wheels are inferior to flexible wheels from the following points of view:

- They develop considerably higher motion resistance than flexible wheels.
- This means that locomotion energy reguirementis are considerably higher for rigid whecls.
- Drawbar pull performance (which is a direct meagure of the slope climbing capability) of a vehicle equipped with rigid wheels is poor compared to that of one with flexible wheels.

This latter point is illustrated in Figure 6.2.1, where drawbar pull performance for the twro types of wheels is compared over a wide range of soil conditions. Rigid wheel performance is clearly inferior, especially in the softer soils.

In rough terrain, rigid wheels trangfer high impact forces to the vehicle chassis resulting in possible damage to the vehicle or payload and poor ride performance, as was discussed in Section 5.5 of this report.

In the course oi the Lunar Mobile Laboratory (MOLBE) study, six different metallic flexible wheel concepts were evaluated and compared to determine which concept or concepta would best suit the requirements of vehicle operation over the lunes

D2-83012-1
Page 6.9
surface. The pneumatic tire and rigid wheel were also included in the evaluation process for comparison purposes.

The eight candidate wheel concepts are illustrated in Figure 6.2.2 and described in Figure 6.2.3. Conceptual design layouts of each were prepared and supporting calculations developed in eufficient detail to provide a basis for comparison of tiae several concepta from the viewpoints of:

- Mechanical Reliability
- Mass
- Soft Soil Mobility
a. Gradeability
b. Locomction effieiency
- Obstacle Mobility
a. Step obstacle
b. Crevice
- Steering Resistance
- Effect on Ride Comfort
- Stability
- Wear Resistance
- Environmental Compatibility
- Deveiopment Risk and Cost

Results of the evaluation indicated that the wire frame and bi-directional metalelastic wheels would be the most suitable for lunar application with the wire frame version considered somewhat superior on the basis of importance factors assigned to each of the above criteria. The wire frame wheel was therefore selected as the baseline concept for MOLAB and is fresently being used as the basis for LSSM preliminary design. However, both concepts will be tested and re-evaluated in the Lunar Wheel and Drive System Environmental Test Program (AES Payloads), Contract NAS 8-20267, presently being conducted by GM DRL.

It should be noted that at this time, preumatic tires have been eliminated ciue to incompatibility with the lunar envircnment. At present, rubbers and elastomers are in general not considered practical due to their low temperature brittleness and D2-33012-1

Puge 6.10

1. RIGID		5. NETAL-ELASTIC (BIDIRECTIONAL)	
2. PNEUMATIC		6. ELLIPTICAL	
3. Wre frame		7. HEM! SPHERICAL	
4. METAL-ELASTIC (UNIDIRECTIONAL.)		8. HUBLESS	

Figure 6.2.2-Candidate Wheel Concepts

D2-8.3012-1
Page 6-11

1. Rigid
2. Pneumatic
3. Wire Frame
4. Metal-Elastir
(Unidirectional)
5. Metal-Elastic (Bidirectional)
6. Elliptical
7. Hemispherical
8. Hubless

Simple, all retal construction. No appreciable deflectio under load.

Conventional inflated tire. Highly developed for terrestrial applications.

Steel mesh covering over a pantographing flexible wire frame. Performs somewhat like a pneumatic tire.

High deflection wheel of open construction. Flexible, semi-circular metal band spokes.

Same as above with full circular spokes.

Metal band wheel of open construction. Canted hubs and pin-ended spokes constrain wheel to elliptical shape.

Canted hub, hemispherical shape, wise frame whecl. Provices increased roll stability.

Rim-driven flexible band wheel. High deflection, open construction

Figure 6.2.3 Deacription of Candidate Wheel Concepts
out-gassing characteristics. Other factore such as abrasion and puncture resistance and permeability to gasses must also be considered. If LSSM operations are limited to the lunar day, it may be possible with advances in the state-of-theart to develop a pneumatic tire for lunar operation. It is doubtful, however, that such a tire would ever be capable of lunar night operations.

6.2.2 Wire Frame Wheel Test Program

A wire framz wheel development program was conducted at GM DRL under the in-house Lunar Roving Vehicle Design Investigation Program (W.O. 20-22108-200) and the Mobility Test Article (MTA) Contract NAS 8-20251.

Primary objectives of this program were to develop design data on the wire trame wheel concept defined under the Lunar Mobile Laboratory (MOLAB) contract and to oprimize the design for use on the MTA. In addition, the results of the program would be utilized to help define an LSSM wheel design. A number of 60 in . dia. x 15 in. wide wire frame wheels were tested incorporating various combinations of material, number of wires and fabrication and processing techniques. As a result of this development program, a satisfactory design has been established for use on the MTA and much valuable data has been gathered to aid in the development of a wire frame wheel for surface vehicles capable of operating in the lunar environment.

The tests described herein were conducted on the GM DRL rolling road facility shown in Figure 6.2.4. This facility consists of a variable speed moving belt to which obstacles may be attached for rough surface tests. A parallel-arm attachment structure, to which the wheel with its associated drive system and suspension may be mounted, is rigidly attached to the frame of the rolling road. A loading and counterbalancing platform are also provided. Instrumentation is provided to measure wheel speed, total revolutions, road speed, wheel torque and vertical acceleration. A DC motor drives the wheel through an 80:1 reduction harmonic drive unit. By varying the speed of the wheel drive system and the beit speed of the rolling road, a wide range of speed-torque conditions may be simulated.
$-$

In all, ten test article wheels were subjecied to endurance testing on the rolling road. The first test article wheel incorporated all of the critical wheel elements - outerframe, tread, covering, and inner frame. It soon became evident, however, that a major problem existed in obtaining adequate fatigue life. For this reanon further testing was restricted to endurance testing of the outerframe only in order to develop a wheel adequate for use on the MTA.

Figure 6.2.5 illustrates four basic variations of the wire frame wheel which were included in the test program. In the looped-joint construction each wire is looped at the intersection resulting in positively interlocked joints. The hand woven construction eliminates the looped joints by simply interweaving inter secting wires. Both versions of the pre-crimped woren construction utilized wires which were crimped at regular intervals tc positively locate the wire intersections.

Test Article 1: The first wheel to be tested was a complete system. That is all major clements were represented as follows: Disc and rim - 0.080 thick 6061 -T6 aluminum spun construction; outer frame - 0.090 music wire, 90 right hand, 90 left hand wircs, 1.5 inch mesh, hand woven; inner frame - 90 SAE 1095 clock, spring steel loops connected by 3 rings; covering - type 304 CRES wire cloth, 24×24 mesh, 0.010 wire diameter; tread - plastic-coated chain link fencing, 1.5 inch mesh. Preliminary testing indicated that the cover and tread design required more development. The most serious problem, however, appeared to be the wire outer frame. Operating at a speed of 60 rpm and loaded to a deflection of 2.5 inches the first wire in the frame failed at 20,000 cycies and at approximately 34,000 cycles 5% of the wires had failed. It was, therefore, decided to defer jurther testing of other wheel elements until such time as the wire frame achieved satisfactory fatigue life and subsequent tests were conducted on uncovered wheels (basic wire frame only). All subsequent endurance tests were run at a speed of 60 rpm and a torque of $25 \mathrm{lb}-\mathrm{ft}$ with the wheels loaded to a nominal deflection of 2.5 inches. Failure of five percent of the total number of wires in the wheel was arbitrarily established as the comparison point for fatigue life.

PRE-CRMMPED WOVEN CONSTRUCTION
0.065 MUSIC WIRE - 0.50 MESH (540-630 wires)
o
Figure 6. 2.5-Alternate Construction Techniques, Wire Frame Wheel

D2-83012-1
Page 6-16

F

Test Artiule 2: Test Article 2, supplied by the Goodyear Tire and Rubber Company, utilized the looped joint method of construction. The wires failed rapidly at the points of intersection, reaching the 5 percent failure level after only 6000 cycles.

Test Articles 3 and 4: The first test scaies indicated that a degign must be designed to provide positive location of the wires at each intersection without introdueing the high local stresses associated with the looped-joint mode of construction. The wire frames of the third and fourth wheel constructed were woven as continuous cylinders with the individual wires crimped at each intersection to locate them positively. The number of wires was doubled from 180 (1.5 in . mesh) to 360 (0.75 in. mesh) \exists and the wire size was reduced to 0.072 inch diameaer in order to lower stresses. Wheel No. 3 was woven from type 304 CRES wire while wheel 4 was woven from music wire. Both wheels survived approximately 28,000 cycles of operation before 5 percent of the wires had broicen.

Test Article 5: This wheel was constructed using 0.063 inch music wire in order to reduce stress levels still further. The number of wireg was maintained at 360 since the 0.75 inch mosh was readily available. Extra care was taken in the crimping process to avoid nicking the wires which causes local stresses. The wheel survivad 48,000 cycles before reaching the 5% fatigue failurc level.

Test Article 6: Examination of test resuris and aralysis of the wire frame indicated that stresses induced by forming the wheel from in cylinder into a torus were in the order of 100,000 psi. This stress, together with operating stresses, resulting in net morking stress levels of 180,000 to $200,000 \mathrm{psi}$. To attain a fatigue life of at least 100,000 cycles, stresses must be kept at 150,000 psi or lower. Test Article 6 was therefore stress-relicved by forming the flexible wire cylinder into a torus on a fixture and relieving the stresses at $500^{\circ} \mathrm{F}$ tor one hour. This wheel survived approximately 60,000 cycles, indicating some improvement

Test Article 7: Inability to reach the target life of 100,000 cycles with the first sir wire frame wheels to be tested prompted the investigation of an alternative concept which did not use intervoven wires. A radial strip wheel, ehown in Figure 6.2.6, wras fabricated from 900.050 inch $\times 0.50$ inch preformed clock epring steel

$$
\begin{aligned}
& \text { D2-8:012-1 } \\
& \text { page 6-17 }
\end{aligned}
$$

Figure 6.2.6-Radial Strip Wheal
loops interconnected by a 1 inch $\times 0.050$ inch circumferential ring of the same material. This wheel survived 90,000 cycles and showed promise as a back-up configuration to the wire frame wheel.

Test Article 8: A test wheel was fabricated from 3600.125 inch $\times 0.052$ inch clock spring steel strips woven on a 0.75 inch mesh. This wheel proved very difficult to fabricate and lasted less than 20,000 cycles before reaching the 5% failure point.

Test Article 9: Test Article 9 may be considered a pre-prototype of the MTA wheel. It was fabricated from 540 pieces of 0.065 inch music wire wover in a 0.5 inch mesh. Operating stresses were minimized by "over-wrapping" the flexible wire frame during stress-relief and by utilizing a large number of small diameter wires. This wheel has completed approximately 160,000 cycles at the 5% failure point. The results of this test indicate that, with minor modifications, the 0.5 inch mesh would be suitable for use on the Mobility Test Article (MTA).

Test Articles 10 and 11: Test Article 10 was a duplicate of Test Article 9 with the exception that approximately one-third of the wires were plated to evaluate electroless nickel as a corrosion and abrasion-resistant coating. The nickel plated area failed rapidly, indicating that the plating had a delitereous effect on the fatigue life of the wire. Test Article 10 was also used to determine the circumfrential spring rate of an MTA type wheel. This was necessary in order to determine the required load-deformation characteristics of the neathane tread strips to be used on the MTA wheel.

Test Article 11, a prototype of the MTA wheel, was woven from 630 wires of 0.063 inch diameter. This wheel was used to verify fabrication and assembly techniques and to confirm proper fit of the tread strips.

6.2.3 Test Program Summary

In summary it may be concluded thac:

- The looped-joint method of zonstruction is not acceptable.
- Hand-woven construction is not asceptable.
- Pre-crimped construction is an accepiable solution if care is taken in the crimping process
o Stress-relieviaz is necessary
- A wire material is required with fatigue properties comparable to those of music wize
- A configuration has been developed suitable for operation in the terrestrial environment for MTA.

While a significant amount of progress has been made in the development of the wirc frame wheel, a great dcal of effort still remains in advancing the development from a functionally acceptable design to the status of fully qualified lunar hardware. Remaining problems include:
o Selection of suitable wirc materials for the flexible outer frame to prevent cold-welding.

- Design and material selection for the inner frame
- Desigr and material selection for the tread

In any cvent, the information gained during the course of this test program has proven useful in the preparation of the present preliminary design for the LSSM wheel.
6.2.1 LSSM Wheal Design Criteria

The criteria used for LSSM wheel design are listed in Figure 6.2.7. Wheel dimensions are set by LEM/Shelter stowage requiremerts at 102 cm (40 in.) diameter by $25 \mathrm{~cm}(10 \mathrm{in}$.) wide.

The luaded mass of the baseline LSSM ranges approximately from $976 \mathrm{~kg}(2170 \mathrm{ibm})$ to 1035 kg (2300 lbm) depending upon the mission profile. As a baseline, the nominal wheel load was normalized at $289 \mathrm{~N}(65 \mathrm{lbf})$ which represcnts the mean between the two extremes. The nominal wheel torque has been normalized to the maximum continuous duty torque required to climb a 35° slope. The limit radial loid has been normalized at $5204 \mathrm{~N}(1170 \mathrm{lbf})$ which represents a 3 g (earih) input; this is the dynamic load commonly specified for slow-moving, off-road terrestrial vehicles.

1. Nominal Diameter	$101.6 \mathrm{~cm}(40 \mathrm{in})$.
2. Nominal Width	$25.4 \mathrm{~cm}(10 \mathrm{in})$.
3. Nominal Load	$289 \mathrm{~N}(65 \mathrm{lbf})$
4. Nominal Torque	$92 \mathrm{~N}-\mathrm{m}(68 \mathrm{lbf}-\mathrm{ft})$
5. Limit Radial Load	$5: 04 \mathrm{~N}(1170 \mathrm{lbf})$
6. Limit Lateral Load	$578 \mathrm{~N}(130 \mathrm{lbf})$
7. Maximum Torque	$165 \mathrm{~N}-\mathrm{m}(120 \mathrm{lbf}-\mathrm{ft})$
8. Deflection at Nominal Load	$4.3 \mathrm{~cm}(1.7 \mathrm{iri})$.Wire Franie
9. Nominal Spring Rate	$66 \mathrm{~N} / \mathrm{cm}(38 \mathrm{lbi} / \mathrm{in}$.$) Wire Frame$
10. Maximum Wheel Speed	92 rpm
1:. Life	100,000 Rev.

Figure 6.2.7 Wheel Design Criteria

The maximum torque represents the intermittent duty torgue required for -obstacle climbing. The wheel deflection at nominal ioad is set as 17% of the section width. The maximum wheel specd of 92 rpm represents a vehicle speed of approximately $16 \mathrm{~km} / \mathrm{hy}(10 \mathrm{mph}$) and the life criteria of 100,000 revolutions allows for $200 \mathrm{~km}(125 \mathrm{mi}$.) of travel with a sefety factor of 1.0.
6.2.5 LSSM Wheel Peclimenary Design

The LSSM wheels illustrated in Figure 6.2.8 and 6.2.9 consist of the following basic elements: wheci disc, rim, woveli wire outer frame, inrer frame, and tread. The wheel design shown in Figure 6. 2.3 is that evolved during the course of the present LSSM stucy. That shown in Figure 6.2.9 is the design under consideration for use in the Wheel and Drive System Environmental Tesi Frogram. The two concepts are similar except for the number of wires and inner frame design. The latter concept is the one that appears most promising at this time and is now consicered the bascline LSSM wheel and is therefore discussed below.

Tho whel disc is a formed or apun ronical frustrum which attoches to the virecl drive hub ard the rim. $7075-T 6$ aluminum alloy and 6 Al-4 titanium alloy are curcently considerra pormising material for this component.

The rim will be fabricated from the same material as the whe disc. Fasteners through the rirn will secure the wire frame beiween the rim and the inner frame.

The woven wire outer frame crasigts et 5.f interwoven wires in a $0.375-\mathrm{in}$. meah. Somp materiais under comsideration iralude Reno' il, L605, A2B6, 17-7PH, and
 a cyhrder ard then prefozmed to a torotial shape by stress-relieyta on a fixture. Design computatons weremade icr the woven wire outer frame based on the analytical method developed in the MODAB study and subsequently moditied by :rselat of testa nerformed on variove beadhoned and MTA wheels. The choice

$$
\begin{aligned}
& 02-8.3012-1 \\
& P_{\bar{a} .3} \text { e 6-22 }
\end{aligned}
$$

Figure 6.2.3 - Wheel, Wire Frame, Mokility
D2-83012-1 Subsystem, LSSM

Page 6-23

5
)

D2-83012-1
Paga 6-24

stresses should be keptat or below 150,000 psi for materials with fatigue properties comparable to those of music wire and $100,000 \mathrm{psi}$ for titanium alloy wire. The computations established the stress levels as 151,000 psi for the materials having a modulus of approximately 30×10^{6} psi and as $96,000 \mathrm{psi}$ for the titanium alloys. The wire diameters were established as $0.127 \mathrm{~cm}(0.050 \mathrm{in})$ for the $13 \mathrm{~V}-11 \mathrm{Cr}-2 \mathrm{Al}$ titanium alloy and approximately $0.107 \mathrm{~cm}(0.042 \mathrm{in})$ for the other materials. Peak stresses in the wire frame are expected to be up to 50% higher than the normal operating stress. However, the high tensile strengths of the alloys being considered (225 to 375 ksi) will prevent any overstressing of the wire at maximum deflections.

The inner frame limits vertical and lateral deflection of the outer frame and absorbs impact loads. It consists of 36 hoop elements interconnected by a hatsection ring. Two clamp rings at the ends of the hoop elements carry clinch nuts used to clamp the outer frame. A welded construction of 6Al-4V titanium alloy is currently being considered for the inner frame because of its high strength-toweight ratio.

The assumption was made that the flexible wire outer frame will deflect 7.62 cm (3 in.) before encountering the inner frame. Since it had been determined that maximum wheel deflection must be limited to $8.89 \mathrm{~cm}(3.5 \mathrm{in}$.) to prevent overstressing of the wire frame, design calculations for the inner frame were based on $1.27 \mathrm{~cm}(0.5 \mathrm{in}$.$) deflection at the limit radial load of 52 \mathrm{c} 4 \mathrm{~N}(1170 \mathrm{lbf})$. The number of hoop elements was established as 36 based on the trade-off of minimiming the number of hoop elements to save weight while locating the hoops close enough to each other to evenly distribute the lead. The shape of the hoops was scaled from the MOLAB inner frame and a rectangular cross-section was assumed. In order to maximize themoment of inertia of the circurferential ring while keeping weight to a minimum, a stable hat cross section was assumed. Computations established the hat section dimensions as $3.81 \mathrm{~cm}(1.5 \mathrm{in})$ high $\times 2.54 \mathrm{~cm}(1.0 \mathrm{in})$ wide $\times 0.11 \mathrm{~cm}(0.043 \mathrm{in})$ thick and the radial hoop section as $0.82 \mathrm{~cm}(0.322 \mathrm{in})$ wide $\times 0.31 \mathrm{~cm}(0.123 \mathrm{in})$ thick. Stresses at the limit load were calculeted as $38,000 \mathrm{psi}$ in the ring and $100,000 \mathrm{psi}$ in the hoop eiements. These stressea are well within the capabilities of the alloys under consideration.

The tread provides a bearing surface for the wheel. The design of a tread which will be capable of the elastic deformations required to conform to the wheel circumference as the wheel rolls under load will be developed in the Wheel and Drive Experimental Test Program. A woven wire braid material or separate metal iugs are currently under consideration.

6.2.6 Wheel Mass Summary

The results of the mass analysis for the baseline LSSM wheel are presented in Figure 6.2.10. The estimated mass shown re resents a reduction of about 5 lb . per wheel as compared to the previous wheel concept shown in Figure 6.2.8.

	Mass	
Item	(kg)	(1bm)
1. Outer Frame	2.6	5.8
2. Inner Frame	3.9	8.6
3. Rim	0.8	1.7
4. Disc	1.1	2.5
5. Tread	2.0	4.5
6. Fasteners and Weldments	0.7	1.5
Total	11.1	24.6

Figure 6.2.10 Wheel Mass Summary

6. 3 WHEEL DRIVE MECHANISM

6.3.1 Introduction

The conceptual design of the LSSM wheel drive mechanism was guided by the following general considerations:

- Mechanical simplicity
- Compatibility with the lunar thermal and vacuum environment
o Ease of integration into the ESSM mobility system

Earlier studies performed during the MOLAB and MTA programe had resulted in the conclu ion that, for lunar operation, the harmonic drive system was the preferred mechanism for a wheel drive. This conclusion has been carried over into this study.
6.3.2 Requiremente

General requirements for the wheel drive meshanisms were set forth as follows:
(2) Each wheel drive assembly shall consist of a drive motor, gear reducer, brake system and declutching mechanism.
(3) The entire drive assembly shall be hermetically sealed to the maximum extent possible.
(4) The wheel drive shall be capabie of operating in either direction. Ability to declutch each wheel from its drive mechanism is required to allow vehicle operation without skidding a wheel should fail.ure of a wheel drive mechanism occur, or if only some of the wheels are to be driven, as in the case of smooth hard ground.
(6) Independent passive thermal contrcl (radiator) shall be provided for each wheel drive system.
(7) Figh reliability, high efïciency, low woight, and amall aize are primary design objectives.
Each wheel shall be independently powered by a separate drive assembly mounted in the wheel hub.
-

Operational requirements were establiened as follows:

0	Output Torque	
	@ $92 \mathrm{rpm} \mathrm{(maximum} \mathrm{speed)}$	
	@ 5 rpm (maximum continucus duty)	$68 \mathrm{lb}-\mathrm{ft}$
	@ 2 rpm (intermittent)	$120 \mathrm{lo}-\mathrm{ft}$
0	Overall Speed Reduction	$130: 1$
0	Maximum System Temperature	$400^{\circ} \mathrm{F}\left(477^{\circ} \mathrm{K}\right)$
0	Maximum Brake Torque	$120 \mathrm{lb}-\mathrm{ft}$
0	Maximum Continuous Bralce Dissipation	45 watts

The intermittent duty torque point is that required for the LSSM to climb a step obstacle 40 inches high. This value was determined from scale-model tests. The maximum continuous duty point correspondo to the requirement for climbing a 35 degree hard surface slope. The maximum apeed torque is derived from the requirement for a maxirnum vehicle speed of $16 \mathrm{~km} / \mathrm{hr}$ (10 mph) over a ievel, hard surface.

The overall speed reduction of approsimately $130: 1$ converts the $12,000 \mathrm{rpm}$ input to the drive from the integrally mounted electric motor to a maximum wheel speed of 92 rpm .

Maximum brake torque was established to match maximum dxive torque requirements and the continuoua brake heat dissipation is design:d to permit continuous downinli braking at speeds equal to the maximum driving speed uphill. In addition there are requirements for manizal operation of the brakes for both emergency and parking modes, and for exncrisency manual declutching of the wheel in case of wheel drive malfunction.

6.3.3 Drive Mechanism Desciotion

The design evolved to meet theae requirsments is shown in Figure 6.3.1. It consists of the following major elements:

Figure 6.3.1 - Wheel Drive Mechanism
D2-83012-1
Subsystem
Page 6-29

0	Electric drive motor
0	Geartrain
o	Brake syutera
0	Lubication byatem
0	Wheel drive disconnect
0	Radiator

The drive motor is at the gquirel cage induction type, and is directly coumed to the wave gererator of the harmonic drive. The motoris discussci in detail ir, Section b. ? fitho report, under Electric Drive Syatem.) Fhe harmonic drive provides the mafor specd reduction and a hermetic seal that permits ligh apeed components to be operated in a pressurized atmouthere. The output of the harmonic drive le the circular apline which has gear tecth on its outer circumference to engage three amall pinions which irive a ring gear attached to the wheel lub. The wheel hub contains a brake drum surface against which a duo-servo brabe syatem cperateg. Dymamic sealc between the wheel huh and drive assembly provide a mears of controlling pressure in the apace wher: the output gears and frake operate.

The asembly is mounted on the vehicle with the motor outboard. The radiator attached to the motor therefore is located in the best available position for effective radiation to space.

With a maximum hamonic dive input speed of $12,000 \mathrm{rpm}$ and a wheel apeed of 92 rpm , the overall spcedreduction is about $130: 1$. The une of intermediate piniors at the output provide a final output reducion. This reduction, equal to the ratio of the ring gear and circuar spline drive gear pitch diameters, is $1.6: 1$. A reduction of $82: 1$ is provided by the harmonic drive.

The efficiency of the drive is not readily determined, however, a reasonable estimate that takes into consideration the operating environment would be 0.85 for the harmonic drive and 0.90 for the output gearing: or an overall nominal torque efficiency of about 75%

The ring gear drives the wheel hub through a set of apring loaded pins that trans mit the torque between the two membera. A collar normally retains these pins in engagement. When this collar is rotated relative to the wheel hub to a second position, these pins are released and the drive is disconnected from the wheel hub. An alternate system could use a split collar retained by explosive bolts that could be ficed elecirically to disconnect the drive.

The LSSM brake is based on a conventional duo-servo two-shoe brake assembly actuated by a pilot shoe assembly controlled by a small short stroke solenoid. Thic means of actuation is similar to that of commercial electric traiter brakes, where a solenoid forces a friction pad against the rotating brake drum to obtain actuation forces.

The decision to have the brake react against the wheel hub eliminates the need for a second emergency brake such as was required for the MOLAB wheel drive, where declutching the drive system disconnected the service brake. The LSSM design also makes the wheel hub, disc and wheel available as heat sinks and radiating surfaces to dissipate braking energy.

This location of the brake placed a requirement on it for a high torque capability and led to a brake configuration with a high degree of self-energization to minimize brake actuator forces. The detailed design of the brake system will be sensitive to the brake lining materiai and its friction coefficient in the LSSM environment. The main effect of this variable is in the actuator force requirement. Considerable study of actuator systems resulted in the system shown.

In this system, a small friction shoe with a certain amount of self-energization is essentially always in contact with the drum and free to rotate with the drum and react against the brake shocs. Such an arrangement results in requirements for an actuator for this pilot shoe of essentially zero travel and minimum force-requirements that can be met with a low power solenoid. To develop full

- braking torque of 120 lb -ft. it is estimated only 15 lbf is required from the zolenoid.

The parking brake is operated by a manual push-pull cable actuating a small cam device in parallel with the armature of the solenoid. These manual forces required are emall, largely determined by return apring forces required to overcome friction. A tension equalizing syetem of pulleys is ticd to a single operating lever to apply the parking brakea on the four wheels of the forward unit.

With respect to lubrication, the following principles were gere:ally followed:

- To the extent necessary or feasible, mechanisms should be hermetically sealed from the vacuum.
- Mechanisms or parts of mechaniems that cannot be hermetical ; sealed will be closed-off from the vacuum by mechanical or molecular seals to achieve an ambient presbure higher than the lunar vacuum.

Aside from the obvious benefits of avoiding vacuum material problems by hermetically eealing -- several other justifications exizat:

- The presence of an atmosphere assures convective currente to help in the thermal control of the mechanism.
o A controlled pressure alleviates problems that could arise because of the presence of electrical potentials in the mechanism at ionization pressures.
- The presence of controlled and predictable pressures reduces the development and test eifort for elements and materials enclosed by the hermetic seal.

The use of molecular or mechanical seals on all other mechanisms is dictated by the fact that such seals in conjunction with a suitable outgaseing material can maintain an ambient pressure for mechanisms substantially in excess of that of lunar ambient with the following advantages:

- Material probleme are substantially reduced.
- Pressures are of a magnitude that can be readily achieved with ordinary väcuum equipment, simplifying development testing.

Application of these principles is, of course, not simple. They will be strongly dependent on considerations of temperature, which varies over an extremsly wide range, and materials problems that even for a hermetically sealed mechanism will require considerable investigation and testing.

The proposed LSSM wheel drive design is concerned, the refore, not with a specific solution to the lubrication problem, but in reflecting a mechanical design that will permit the develcpment of an acceptable iubrication system when the detailed environmental parameters are firmly established.

Instrumentation at the wheel drive mechanism will be limited to measurement of temperature at the motor case and of pressure in the hermetically sealed section. This latter measurement would be used to obtain operational status data and provide a means of checiking the condition of the seal after final assembly.

Based on MOLAB data and assuming similarity of thermal models, a $2 \mathrm{ft}^{2}$ hubmounted radiator would dissipate enough heat on a continuous basis to mainiain maximum temperatures in the wheel drive assembly under $400^{\circ} F$. This assumes full solar load, maximum lunar surface temperature, and an average heat input of 70 watts. This, therefore, is considered a conservative estimate of raciator size.

For night-time operation, the low temperatures are a problem. There are material, structural and developrrent considerations that dictate that the minimum operating temperature of the drive be maintained reasonably high. For this reason, it is proposed that electrical energy be used to pre-heat or condition the drive for operation. To minimize the amount of energy used to heat the drive and conserve waste heat from the drive, a shield over the radiator is
proposed as shown on the drawing for night-time operation.

The mass of a complete drive system is estimated at $22.0 \mathrm{lbm}(10 \mathrm{~kg})$ with the breakdown as shown in Figure 6.3.2.

Drive Motor \& Electrical		1 bm	l.g
		8.3	3.8
Gear Train \& Lubrication		3.5	1.6
Housing		1.6	0.7
Wheel Hub \& Brake Drum		4.5	2.0
Radiator		2.4	1.1
Brake Assembly		1.7	0.8
	Total	22.0	10.0

Figure 6. 3.2 Wheel Drive Mechanisin Mass Summary
6.4.1 Introduction

A choice of suspension systems is stronsly dependent on the specific vehicle configuration under consideration, as well as the desired performance characteristics. For example, in the case of MOLAB, which ailizer Ackermanntype steering of the front wheels and articulated pivot stcering of the aft unit, it was concluded that to minimive problems associated with incorporating stecring mechanisms and to minimize interiorence with the cabin structurc, parallel arm type suspensions would be used on the forward unit. Since these problems did not exist with respect to the aft unit, a trailing arm type suspension was considered to be most suitable fnr that application.

In the case of LSSM, the configuration originally selected for baseline design (see "Preliminary Design Study of a Lunar Local Scientific Survey Module (LSSM)', First Interim Report, Boeing Document D2-36072-4, September 1965) was similar to that of MOLAB. The suspension system for this concept consisted of parallel arm type suspensions at the front wheels, and trailing arm suspensions for the center axle and aft unit. In this case, trailing arms were chosen for the center and aft axles because they were readily adaptable to the basically flat chassis frame structure.

As LSSM design progressed, however, the baseline configuration was altered to utilize Ackermann steering at both the fron: and aft unit wheels. This in turn led to the conclusion that all the steered wiecis should incorporate parallel arm suspensions. Although the center axle wheels could still use a trailing arm suspension, it was decided that in the interest of commonality and in tr.e hope of reducing development time and costs, parallel arm suspensions with torsion bar spring element would be used throughout.

6.4.2 Requirements

General requirements established for the suspension system design are summarized as follows:

D2-83012.1
Page 6-35

1) Essentially the same suspension shall be used at each wheel to achieve the greatest commonality of paris.
2) Each suspension assembly shall be of the parallel arm type, incorporating a torsion bar spring element.
3) A linear dash pot damper shall be used at each suspension. Travel stops shall be incorporated in the damper.
4) The suspension shali be designed to maximize ground clearance and resistance to damage from ground surface obstructions.
5) Reliability, minimum weight and simplicity shail be design objectives.

Functional design requirements were established as follows:

1) Total vertical travel
2) Spring rate
3) Damping rate
4) Ability to react wheel torque of
5) Ability to withstand longitudinal impact load
(applied at wheel centerline)
6) Ability to withstand lateral wheel load
$10 \mathrm{in} .(25.4) \mathrm{cm}$
$15 \mathrm{lb} / \mathrm{in}(26 \mathrm{~N} / \mathrm{cm})$
$50 \mathrm{lbsec} / \mathrm{ft}(730 \mathrm{~N} \mathrm{sec} / \mathrm{cm})$
$120 \mathrm{lb}-\mathrm{ft} \mid 162 \mathrm{~N}-\mathrm{m})$
$2300 \mathrm{lbf}(10,400 \mathrm{~N})$
$130 \mathrm{lbf}(578 \mathrm{~N})$

6.4.3 Description

The parallel arm suspension assembly for the LSSM is essentially identical at all six wheels. It consists of welded tubular steel upper and lower arms, the damper/stop assembly and torsion har spring element as shown in Figure 6.4.1. Fittings at the upper and lower edges of chassis prcvide the mount for the inner suspension winile the drive mechanism provides the attachment for the outboard ends of the suspension. Glass filled teflon sleeve bearings are used at the suspension bearing points.

The two arms for the suspension arc fabricated from 150,000-170,000 psi heat treated 4130 steel tubing 0.75 inch 0. D. with 0.065 inch walls, with forged steel end fittings. Tubing size was determined from the design concition of 2, 300 lbf wheel impact load.

$6-37.1$

*

$$
6.37-2
$$

Figure 6.4.1 - Suspension Subsystem, LSSM

The torsion bar is fitted between the two chassis fittings of the upper sus pension arms and is of conventional design. The damper is a linear dash-pot type using electrical heating elements to raise damper fluid temperature to the required operating level.

The suspension is designed for a total vertical travel of 25.4 cm (10 in) of which 3.3 cm (1.3 in) is the upper bump stop travel and 1.27 cm (0.5 in) the rebound bump stop travel. Total jounce is 5.3 in (13.5 cm); rebound is $4.7 \mathrm{in} .(11.9 \mathrm{~cm})$. The relative travel between the vehicle and the ground contact point is 18.1 cm (7.13 in) of jounce and $16.2 \mathrm{~cm}(6.37 \mathrm{in})$ of rebourd. The estimaied mass per suspension assembly is $10 \mathrm{lbm}(4.5 \mathrm{~kg})$.

6.5 STEERING SYSTEM

6.5.1 Introduction

As in the case of the suspension system, the selection of a stecring system depends on the specific configuration and performance and functional requirements of the vehicle under consideration.

The baseline LSSM originally selected for preliminary design incorporated Ackermann steering of the front whecls and articulated pivot steering of the aft unit. This scheme was utilized because the required size of the aft unit platiorm was not well-defineci at that time, and articulated steering permitted a wider platform by eliminating encroachment of the wheels on the platform area. Furthermore, two methods of steering the front wheels were also considered at that time:

1) Individual hermetically sealed mechanisms at each of the front whecls consisting of an electric motor driven harmonic drive assembly (similar to the Boeing-GM DRL MOLAB).
2) An electric motor driven cross-link assembly connected to pitnian arms at the wheels. This method provided nositive mechanical synchronization of the wheel turning angles.
The choice would ultimately depend on problems of integration with the suspension, wheel drive and chassis assemblies.

As preliminary design of the mobility system progressed and system require ment became better defined, the decision was made to Ackermann steer both the front and aft unit wheels. In addition, it was determined that it was feasible to incorporate the mechanical cross-link assembly both on the forward and aft units. This resulted in two essentially identical steering mechanisms, ihereby potcntially reducing development time and costs. Furthermore, by interconnecting the two units with a flexible shaft, problems assuciated with the syncnronization of individual mechanisms would be eliminated. Another important consideration was the fact that this type of system lent itself to incorporation of a marually actuated emergency stetring capability.

6.5.2 Design Requirements

Torque.-Speed Characteristic3: Torque-speed characteristics for the outputs of the steering mechenisms were derived for four assumed steering conditions. All calculations were made for an assumed static coefficicnt of friction of 1.0 between wheels and ground, which is the worst possible case to erivision.

Condition 1: The vehicle is stationary or moving very slowly, all wheels are in contact with the ground, and one wheel encounters an obstacle it cannot negotiate. The assumption is made that the vehicle wrill pivot ab out its center of gravity when sufficient torque is generated at the steered wheel to overcome the total resisting force of the vehicle.

For this condition it was determined that the stecring torque required at the wheel would be $260 \mathrm{lb}-\mathrm{ft}(352 \mathrm{~N}-\mathrm{m})$ at 0.6 degrees $/ \mathrm{sec}(0.1 \mathrm{rpm})$.

Condition 2: The vehicie is stationary and all wheels are in contact on level ground. In this case the torque is that required to rotate a deflected wheel.

Steering torque vas determined to be $20 \mathrm{lb}-\mathrm{ft}$. ($27 \mathrm{~N}-\mathrm{m}$) at a gtegring rate of 6 dagrees/sec (1.0 rpm).

Condition 3: This condition is the same as (2) above, except that the torque was determined for a steering speed of 15 degrees $/ \mathrm{sec}(2.5 \mathrm{rpm})$. Furthermore, an assumed equivalent sliding coefficient of friction of 0.63 was used in place of the static coefficient of 1.0 .

The torque requirement for this case was calculated to be $121 \mathrm{~b}-\mathrm{ft}$. ($16 \mathrm{~N}-\mathrm{m}$).

Condition 4: This condition was established to determine the maximum resisting torque which the steering merhanism must be able to develop.

This was determined to be $40 \% \mathrm{lb}-\mathrm{ft}$. ($552 \mathrm{~N}-\mathrm{m}$) for an assumed dynamic longitudinal load input through the wheel centerline.

1 D2-83012-1
Page 6-40

Geornetric Characteristics: Other important rcquirements established for the steering systemereminimum turning radius consistent with vehicle geometry, and synchronization of steered wheel angles to maintain a common center of rotation at all times. The maximum angle was determined to be 25 degrees, which would result in a wall-to-wall turning radius of about $19.0 \mathrm{ft} .(6.1 \mathrm{~m})$. The required angular relationships between the steered wheels are shown in Figures 6.5.1 and 6.5.2.

6.5.3 Steering System Description

Steering Mechanism: The proposed design is shown in the drawing of Figure 6.5.3. The system consists of two electric motol-powered units, one steering the forward sct of wheels, the other steering the wheels of the aft unit. The concept is similar to that of conventional automotive Ackermann steering.

Each steering actuator assembly consists of a cross -link assembly, housing, connecting links to the wheels, bail-nut input, motor assembly with a spiroid gear output and a flexible drive shaft interconnecting and synchronizing forward and aft steering actuators. The short stroke of these linear actuators makes hermetic sealing with conventional bellows feasible with no significant weight penalty. In addition, there is provision for a manual emergency steering input for the forvard unit actuator. Overall reduction of tie mechanism is approximately $1250: 1 ; 33: 1$ at the ball screw and $38: 1$ from the spiroid gear and pinion.

Each actuator can deveiop a maximum thrust of $7,450 \mathrm{~N}$ (1675 1bf), a maximum rate of travel of $2.7 \mathrm{~cm} / \mathrm{sec}(1.08$ inches $/ \mathrm{sec}$) and total stroke of $5.6 \mathrm{~cm}(2.2$ inches). The complete steering system weighs approximately $15.5 \mathrm{~kg}(34.01 \mathrm{bm})$ of which $2.2 \mathrm{~kg}(4.8 \mathrm{lbm})$ is associated with the emergency steering mode.

The emergency mode of operation is designed to operate independently of the actuator mechanism and thereby remain operative in case of complete freeze-up of the intcrnal parts of the actuator. This is accomplished by releasing the locks that retain the housing so that the housing becomes the cross -link regard less of the position the internal cross-link is in when it becomes inoperative.

D2-83012-1
Page 6-41

- sheneme monot Aasy

Figure 6.5.3 - Steering Actuator Subsystem,
D2-83012-1
LSSM
Page 6-44-3

Steering Motor and Controis: The electric motor for each actuator is rated at about 30 watts oitput. The motor output characteristics are shown in Figure 6.5.4. These characteristics are representative of a Globe Industries type BL dc motor or equivalent.

Steering control could be either by an open or closed loop system. The open loop system is simpler in terms of circuitry, but steering control is more precise for the closed loop method. The choice of system might depend on human factors considerations or the requirement for remote operation of the vehicle.

An exarnple of an open loop steering system is shown in Figare 6.5.5. Two permanent magnet motors are used to provide simple reversing and dynamic braking operation. A turn is made by moving the steering control handle in the direction of the desired turn. A clock-wise tilt closes switch S_{1} and relay K_{1} becomes energized. Current flows thru speed control rheostat R_{1} into the motor armature and the motors turn tc produce a clockwise turn. When the desired turning angle is achieved the steering control lever is returned to its neutral position and the stecring mechanism remains turned in the desired angle. The tilt angle of the control lever determines the turning rate by adjusting the speed rheostats.

Synchronization of the two motors is maintained by a flexible shaft which mech anically couples the motor shafts (thru reauction gears) to each other. Mechanical coupling also provides for sharing the steering load between the two motors.

The steering mechanism can be either directly coupled to motor shafts or thru clutches. Use of clutches, such as magnetic particle clutches, woulideduce the inotor ${ }^{3}$ tarting currents considerably by delaying application of the load until the motors are up to speed.

Figure 6.5 .6 shows the circuit for a closed loop system employing series field motors and magnetic particle clutches for coupling the motors to the steering mechanism. In this system movement of the 3 teering mechanism follows the D2-83012-1

Page 6-45
(syem) y Mod Indino yolow

Figure 6.5.5-LSSM Steering - Open Loop

Figure 6. 5.6-LSSM Steering - Closed Loop

This emergency input is a rack and pinicn diriven by a rachet handle.

A detailed analysis was made of the steering mechanism from the points-of-view of loads, velocities and speed - torque requirements. The major results are summarized in the paragraphs following.

It was determined that the ball screw must be capable of handling a maximum static load of 1700 lbf and operational loads up to 2200 lbf . For the method of loading employed, the ball screw which meets the sizing requirements is type 0375-1875. The minimum required nut length is determined by the static load per turn of balls and the lcad of tread. In this case the static limit per ball turn for the screw is 720 lbf . Assuming the ball nut has five complete turns, the maximum static capacity of the ball nut would be 3600 lbf which provides a safety factor of 2.2 . For an operating load of 2200 lbf the expected life of the screw is 60,000 cycles. The minimum length of the ball nut to carry the oper ational and static loads is 1.5 inches. It should alsc be noted that the screw speed falls well within the maximum safe speed.

The selection of the spiroid gear for this application was based upon ita reduction ratio and capability to meet the torque requirements. The spiroid selected has the following characteristics:

- Reduction ratio 38:1
- Center distance
0.5 inches
- Pinion O. D.
0.456 inches
- Full depth
0.075 inches
- Nominal torque

100 1b-in.
o HP out at 1750 rpm
0.038 HP

- HP in at 1750 r pm
0.067 HP

Based on spiroid gear tables, the above power characteristics provide afactor of safety of 1.4 for the maximum output torque condition, and 2.4 at the maximum input speed condition. The efficiency of this gear pass is estimated at 58%.

D2-83012-1
Page 6.49
movement of the steering control lever. The steering control lever is directly coupled to the command pots R_{1} and R_{2} while the steering mechanisms are coupled to the follow -up pots R_{3} and R_{4}. Two Wheatstone bridges are formed by pots R_{1} and R_{2} and by pots R_{3} and R_{4}. Movement of the steering control causes an unbalance in the bridge. The unbalance is detected by polar relays K_{1} and K_{2} which energize the magnetic particle clutches to cause the steering mechanism to move in the direction which will electrically balance the bridge.

Synchronization is maintained by coupling the command pots together. An optional flexible shaft provides for sharing the load.

A current relay in the motor armature circui prevents application of the load until the motors are up to speed and also disengages the motor if an overload develops. Limit switches are placed in the clutch circuits. The dual control circuitry permits independent operatior of either the aft or forward steering mechanism.

6. 6 CHASSIS FRAME ASSEMBLY

-6.6.1 Introduction

The conceptual design of the LSSM chassis-frame assembly was guided by the following general considerations:

- Structural simplicity consistent with the semi-flexible frame concept.
- Provide an integrated mobility subsystem to minimize interface problems with other vehicle systems.
- Provide maximum flexibility for adaptation to other vehicle systens such as crew station, scientific equipment, etc.
While space frames and other chassis types were studied conceptually, the above considerations led to a chassis -frame concept based on flat box structures.

6.6.2 Requirements

The generai requirementa established for the chassis -frame assembiy are surmmarized as follows:

1) A flat top surface shall be maintained.
2) Load paths for the stowage and deployment modes shall be integrated into the structure.
3) Superficial or secondary siructure shall be used to provide additional payload platform area or mounting points for equipment.
4) Extension of the aft unit and flexible frame shall require minimum effort on the part of the astronaut.
5) The chassis shall provide a basis for a complete integrated mobility system.
6) High reliability, low weight and simplicity shall be primary design objectives.

6.6.3 Description

The LSSM chassis-frame assembly consists of the following major components (see Figure 6.6.1):

- Forward unit frame assembly
- Aft unit frame assembly
- Flexible frame assembly

Chassis-Frame: Both the forward and aft chassis-fame units are load carrying box structures on which appropriate fittings are located for the suspension, fexible frame assembly, crew station, thermal compartment and stowage attachments.

Two main structural members near the center of both boxes provide the main load path. These two members also provide the track support for retracting the flexible frame for stowage on the LEM/Shelter. For all practical purposes, the stowage loads determined the size and weight of the chassis members. Attached to this prime chassis structure will be secondary structure configured as required to support the scientific payload.

The two units are fabricated from extruded angles and tees, skin covered into a box beam configuration. The material of the box beam consists of 7075-T6 aluminum alloy sheet and extrusions. The forward unit, 113 cm (44.5 in) wide, 218 cm (86 in) long and 10.2 cm (4 in) deep, has continuous longitudinal cap members and vertical webs. Lateral members are spaced at approximately 14 inch intervals. The upper and lower skins are $.127 \mathrm{~cm}(.050 \mathrm{in})$ thick and all vertical webs are. 102 cm (. 040 in). The aft unit, 113 cm (44.5 in) wide, 50.8 cm (20 in) long and 10.2 cm (4 in) deep, has continuous lateral and longitudinal cap members. The upper and low skins are $0.127 \mathrm{~cm}(.050 \mathrm{in}$) thick, as are the internal vertical webs. The external vertical webs are 0.102 cm (. 040 in) thick.

In the stowed position the forward and aft units are attached together at the longitudinal vertical webs by fittings which carry the bending moments due
D2-83012-1

Page 6-52

zinai 8 B

VIRAA

Figure 6.6.1 - Chassis Assembly, Forward and
D2-83012-1
Aft Structure
Page 6-53
-3
to Load Condition 6, as defined in Boeing letter 2-4466-00-115, "LSSM TieDown Requirements", dated 23 December 1965. This condition imposes an acceleration vector in the $Y-Z$ plane of $\pm 258 \mathrm{ft} / \mathrm{sec}^{2}$ and a rotation acceleration about any axis in the $Y-Z$ plane of $\pm 14 \mathrm{rad} / \mathrm{sec}^{2}$. If these attached fittings were only used at the internal longitudinal cap members, they would increase in size appre ciably, therefore, a weight saving is realized by providing fittings at four locations.

Flexible Frame Assembly: The flexible frame installation consists of the flexible frame, pitch limiter, and the retraction mechanisms.

The spring members of the flexible frame are eight 6AL4V2Co Titanium tubes, 0.625 inch O. D. with a 0.40 inch wall. The tuives are welded to sheet metal box structure cross members at either end. The flexible frame provides for relative displacement between forward and aft units of ± 30 degrees in roll and ± 15 degrees in pitch (limited by a pitch limiter).

The pitch limiter is a telescoping cylinder with $\pm 12.7 \mathrm{~cm}(\pm 5 \mathrm{in})$ of travel. It incorporates springs to cushion the travel against the stops and is expected to provide a certain degree of damping through use of a high viscosity silicone grease (NASA Technical Brief \#65-10144).

For stowage on the LEM/Shelter, the overall length of the LSSM is reduced by sliding the flexible fraine into the forward unit structure. For deployment on the lunar surface, the fexible frame is moved aft and secured ir place.

The flexible frame rides on rollers in a track fitted to the two main chassis members of the forward unit. Upon release of the fastening devices that lock the forward and aft units together for stowage, vehicle power can be used to separate the two units. As the frame travels aift, pins in the ends of cross
members of the flexible frame engage a ramp into a blind slot to stop frame travel. These pins in the frame are then trapped in the slot by applying a force on the enlarged head of the locking pin (this may be done by the astronaut's foot). This force shears a low strength retraining washer. The end of the pin that locks the elastic frame in place is tapered to wedge the frame into its seat.

Estimated Mass: The estimated mass break?own for the complete chassis-frame assembly is given in Figure 6. 6. 2.

		Kg
Forward Unit	39.3	Lbm
Aft Uiit	28.2	66.5
Pitch Limiter	1.7	3.1
Flexible Frame		2.9
	Total	72.1

Figure 6.6.2 Chassis-Frame Breakdown

6.7 ELECTRIC DRIVE SYSTEM

- 6.7.1 Introduction

This section describes the preliminary design of an electric drive system for LSSM propulsion. Based on information gat hered and results of the MOLAB study, laboratory tests, and design analyses, an electric drive system has been defined that will perform the LSSM propulsion functions. The basic system is one that can benefit from advances in materials and circuit technology and can be scaled up or down for various size lunar vehicles.

Figure 6.7.1 depicis the major elements of the LSSM electric drive system. The blocks indicated by dotted lines are not considered part of the clectric drive sy-tem for purposes of this study. Power handling elements are the distribution cables and circuit breakers, the power conditioner semiconductor switches, and the drive motors. The information handling elements are the motor speed sensors, signal cables and power conditioner control circuits.

Squirel-cage induction motors are used to supply propulsion power to the wheels. Torque and speed are varied by controlling motor frequency, slip and current by means of transistor current control inverters.

6.7.2 System Requirements

The following define the requirements for the LSSM drive system:

- Capable of day or night operation in the lunar environment.
- High system reliability (including voltage controllers; inverters, brakes, cables, circuit breakers, and motors)
o Maximum locomotion efficiency. In terms of wheel control this means that:

1. Each wheel should be individually powered.
2. For constant input voltage the torque of each drive motor should increase as wheel speed decreases.
3. Tre speed of an individual wheel should remán close to the average speed of the other wheels when contact with the ground is lost.

D2-830:2
Page 6-56

Figure 6.7.1-Major Elements of an Electric Drive System

D2-83012-1
Page 6-57
4. Torques at the outside wheels should equal the torques at the inside wheels when the vehicle is turning.
5. Average torque of the wheels on each side of the vehicle should not be significantly reduced because of differences in wheel speeds dut to terrain slope variations, unequal wheel diameters, or unequal wheel loadings.

- Capable oí reversing.
- Failure of a single major component or system should not abort the mission.
o Maintenance capability preferred.
o Ability to electrically and mechanically isolate any drive motor and to skid stecr the vehicle for emergency modes of operation.
- Gear shifting not desirable.
o Dynamic braking not necessary.
- Peak electric drive efficiency of 70% or greater (excluding gear box).
o Maximum steady state power den:and 1 kw or lower.

In addition, it is prefarred that the drive motors be cooled by direct radiation to space rather than by circuiating fluids. Temperature control for the logic circuits and power switches should be accomplished by transierring heat from the semiconductors to phase-change materials or circulating fluids.

Required motor torcuc as a function of shaft speed is plotted in Figure 6.7.2. Motor output power versus shaft speed is shown in Figure 6.7.3. A plot of wheel velocity correction factors versus outside Ackermann steering angle for the LSSM is shown in Figure 6.7.4. Wheel differential speed information is required so that the proper voltages can be supplied so the ingide - and outside - wheel motors to maintain equal wheel torquea when the vahicle is turning.

A 56 VDC battery syetem will provide energy for the electric drive system.

6.7.3 D-ive Sybtem Configurations Considered

Preliminary conceptual derigiz of eandidate electric drive systems were prepared ia sulficient detail to cnatic estimates to be made of weight, sise, efficiency,

Figure 6.7.2-LSSM Drive Motor Torque vs Speed

D2-83012-1
Page 6-59

Figure 6. 7.3-LSSM Drive Motor Output Fower va Speed

D2-83012-1
Page $6-60$

Figure 6. 7. 4- Wheel Velocity Corroction Factors D2-83012-1 for Various Stesring Angles
performance characteristics. development time, and reliability.

Three types of electric drive designs --d-c series motor, induction motor, and synchronous motor .- vere evaluated and compared. This analysis resulted in the selection of the induction motor system as most suitable for LSSM application.

In addition, trade-off analyses were made to permit optimizing the selected drive system. A preliminary design of the selected LSSM electric drive system was then performed and functional specifications prepared.

During the course of the study a thermal analysir was made for several motor configurations. The conclusions reached were that the motor for the selected drive system would not require major technological advances. Motor temperatures will be low enough to permit the use of state-of-the-art magnetic materials, conductors, insultion systems, bearings, and motor design practice. If it is desired to have the motor operate unsealed in the vacuum environment for long periods of time, a propram will be required for the developraent of low friction lubsic ate that will insure long bearing life at pressures of 10^{-13} inm Hg .

Conclusions of the reliability study were that a-c clectric drive systems can be developed that have greater reliabilities thand-c drive systems. In a d-c system, failure is most likely to occur in the commutator, with a resultant loss of whet traction. In an a-c system, failure is most likely to nccur in the static inverter. Since inverters can be maintained or made redundant, reliability can be increased to a value not achicvable by in-wheel commutators.

A block diagram of an induction motor drive system is shown in Figure 6.7.5. The power train components arethe d-c power source, the inverter-modulator, and the three-phase induction motor. The sensing and control components are the motor shaft digital tachometers, the frequency control circuits, and the current control circuits.

Figure 6. 7. 5- LSSM Electric Drive System

D2-83012-1
Page 6.63

By substituting a three-phase synchronous motor for the induction motor and operating at zero slip, one could achieve an adequate drive system that may offer somewhat different functional capabilities than the irduction motor system. As an example, dynamic braking can be achieved with lest complexity with a synchronous motor than with an induction motor.

Inverter-driven synchronous motor systems we:e eliminated from final consideration in this study primarily because of insufficient design information that would permit a meaningful comparison with induction motor designs.

Preliminary examination indicated that a double air gap synchronors motor would be heavier and less efficient than a squirrel-cage induction motor for the LSSM application. A synchronous motor drive system requires six inverter-modulator controllers (one per wheel). For an induction motor drive system two controi schemes can be considered: either a two - or a six-inverter system.

Figure 6.7.6 illustrates a LSSM eleciric drive configuration in which two inverters are used, each energizing three induction motors on one side of the vehicle. There are basically two separate drive systems operating from a common power source. The left and zight power trains are each controlled by the driver commerd signals. When the vehicle is turning, torque of the outside whecls can be madc equal to the torque of the inside wheels by increasing the voltage of the outside motors relative to the inside motor voltages. Skid steering as an emergency mode of steering can be accomplished by reversing the motors on one side of the venicle.

In the two-inverter drive sysiem the average wheel sjeed on each side cari be used to determine the irverter frequency. With this system large differences in wheel speed can cause one of the motors to "pull out" and thereby reduce the total output torque of the drive system. The curves shown in Figure 6.7 .7 indicate maximum wheel speed differences allowed as a function of vehicle speed for two values of induction motor slip frequency. For example, at 2 mph the curves show that the wheel speed difference number can be 0.225 at a motor electrical slip of 10 cps.

[^3]

D2-83012-1
Page 6-66

As long as the wheel speed difference number is less than 0.225 , the vehicle will be able to develop maximum tractive effort. If this value is exceeded, the available - tractive effort will be reduced to some extent.

The wheel speed difference number is defined as:

$$
W_{D}=\frac{\text { fastest wheel speed }- \text { slowest wheel speed }}{\text { average wheel speed }}
$$

It appears that two inverter drive systems can be designed in which vehicie mobility is not significantly compromised. In a six inverter drive system, wheel speed differences are less restricted and vehicle mobility may be somewhat greater under some conditions, but actual tests of the two systems on a common vehicle would be required before the superiority of one system over the other could be established quantitatively. A schematic drawing of a six-inverter drive system is shown in Figure 6.7.8.

The two-inverter system is preferred for LSSM for the following reasons:
(1) Less complexity
(2) Lighter weight

However, system reliability and mobility requirements might dictate the use of a six-inverter system. This system appears to offer:
(1) Somewhat higher mobility capabilities.
(2) Higher reliability. (In the two-inverter system, if a redundant inverter is not provided, system reliability is less than that of a six-inverter system.)

6.7.4 LSSM Drive Motor Discussion

Every dynamo-electric machine has two electric circuits linked with a magretic circuit. The function of one of the electric circuits is to serve as a source of magnetomotive force whereby magnetic flux is produced in the magnetic circuit.

Figure 6. 7. 8-Six Inverter Drive System

D2-83012-1
Page 6-68

The function of the other circuit is to serve as a seat of energy exchange betweer, mechanical and electrical energy. A synchronous moter has a direct current in the field winding and alternating current in the armature winding. An induction motor has alternating current in both windings.

Output power of an induction motor depends upon the volume of iron and copper in the motor. The volume can be expressed as $D^{2} L$ where D is the outside diameter of the stator laminations and L is the length of the lamination stack. For a given voltage, frequency, and slip, the torque that a motor can produce is approximately equal to a constant times $D^{2} L$.

The required efficiency and cooling method, in addition to the required torque, will directly affect the weight of the motor. For traction applications, the torque requirement is generally defined by a torque versus speed curve and a problem arises in matching the inherent torque-speed characteristics of the motor to the requirements.

The torque capabilities of an induction motor under three conditions are of interest: starting torque, maximum torque, and running torque.

The starting torque of an induction motor can be expressed as follows:

$$
\begin{aligned}
& T_{\text {start }}=\left[\frac{2}{f}\right]\left[\frac{r}{r_{2}^{2}+x_{2}^{2}}\right] \\
& \text { where } E_{2}=\text { rotor induced voltage at standstill (volts) } \\
& r_{2}=\text { rotor winding resistance (ol.ms) } \\
& x_{2}=\text { rotor winding reactance at standstill (ohms) } \\
& f=s \text { sator frequency } \\
& k=\text { constant }
\end{aligned}
$$

Examination of this expression reveals how starting torque varies as a function of frequency. Assume that the stator current is held corstant as frequenc; f is varied.

When $f=0$, no secondary voltage is induced and torque is zero. As irequency is increased, E_{2} increases and torque increases until a peak is reached. After peaking, torque varies approximately inversely with frequency until rotor reactance becomes significant. Curves of starting torque va. frequency are shown ir Figure 6.7.9 (a) for various values of stator current.

The rnaximum torque of an induction motor $T_{\max }=\left[\frac{2}{f^{2}}\right]$. For a constant applied motor voltage, the maximum torque varies approximately inversely with the square of the frequency. Variations in r_{2}, the rotor resistance, do not change the value of the maximum torque, but do affect the slip frequen cy at which it occurs. This fact is important when one inverter is used to energize more than one motor in the LSSM system. Maximum torque is independent of rotor resistance and slip. Figure 6.7.9 (b) shows curves of maximum torque vs. motor speed. Curve 1 results when E_{2} is held constant at a high value; a motor capable of producing these high torques would be oversized but still just capable of producing the required torque at maximum speed. Curve 2 is obtained by increasing E_{2} as speed is increased; a lighter weight motor could be designed to do this job and still exceed the vehicle requirements irdicated by Curve 3 .

Figure 6.7 .9 (c) shows motor torque versus slip for constant input voltage and irequency. The curve shows clearly that the amount of running torque is dependent upon the slip s. Slips is defined as Δf. The term Δf is called the slip fraquency and is equal to the difference between \bar{f}, the stator frequency, and f_{r}, the rotor rotational frequency. Frequency of the current flowing through the rotor bars oi the squirrel cage motor is Δf. When slip is very small

$$
T=\left[\frac{k^{\prime \prime} E^{2}}{f}\right]\left[\frac{g}{r_{2}}\right]
$$

and torque varies directly with slip and inversely ae gecondary resistance.

Substituting $s=\frac{\Delta f}{f}$ changes the expression for running torque to

If Δf and E_{2} are constant, the running torque varies inversely with the square of the frequency. However, the following expression foi running torque in terms of rotor current can be derived.

2

If I_{2} and Δf are kept constant then the running torque is constant and independent of frequency or shaft speed as shown in Eigure 6.7.9 (d). Changing the rotor slip frequency not only varies the rotor torque but also varies the heat dissipated in the conductors of the rotor.

The copper power loss of the rotor

$$
\begin{aligned}
I_{2}^{2} r_{2} & =P_{2}\left[\frac{s}{I-s}\right] \\
& =P_{2}\left[\frac{\Delta_{f}}{f-\Delta f}\right]
\end{aligned}
$$

where P_{2} is the mechanical powar output of the motor shaft. For small values of slip the heat generated by the rotor bars is approxim ately proporational to the slip frequency.

Heat generated in the roter of lunar vehicle traction motors must be carefully considered because the primary mode of heat transfer will be by conduction through the shaft and bearings into the housing. The magnitude of the heat generated in an LSSM drive motor as a function of speed is shown in Figure 6.7.10.

Figure 6. 7. 10- LSSM Drive Motor $I^{2} \mathrm{R}$ Rotor Losses D2.-83012-1

Page 6-73

Calculations were made for maximum vehicle loaciing and for two values of slip frequency: 5 and 10 cps . For 5 cps slip, maximum steady state $I_{2}{ }^{2} r_{2}$ losses are about 13 watts at a speed of 650 rpm . At the same speed the losses at 10 cps slip frequency would reach about 33 watts.

6.7.5 Preliminary Motor Design

The experience gained with MOLAB and MTA facilitated the preliminary design of the LSSM drive motors. The design was subject to the following ground rules:

- The torque-speed requirements of the motor are as shown in Figure 6. 7. 2. For a maximum motor speed of $12,000 \mathrm{rpm}$, a gear reduction of about $130: 1$ is required. A gear reduction efficiency of 75% is assumed. The maximum continuous duty torque is 0.69 ft . lb . at 650 motor rpm , and the maximum intermittent duty torque is 1.22 ft . lb. at 260 rpm .
- The vehicle is powered by six variable-speed squirrel-cage induction-type motors with controlled slip frequency. The volume of each motor must be contained within a diameter of 5 inches and a length of 4 inches. The motors are passively cooled. The motor case design temperature shall not exceed $440^{\circ} \mathrm{K}$.
- The voltage source is 56 vdc .

The basic dimensions of the LSSM motor were determined from the $D^{2} L$ of the motor used for the GM DRL MTA. For a given flux and ampere loading, which are determined by the magnetic saturation and cooling capability of the machine, the value $\mathrm{D}^{2} \mathrm{~L}$ essentially defines the torque rating of the motor at a given applied frequency. Figure 6. 7.11 lists the pertinent scaling informa, m .

Figure 6.7.11-Motor Scaling Factor $D^{2} L$ for LSSM, MTA

To determine the sensitivity of motor efficiency and performance on weight and size, three basic designs were considered with $D^{2} L$ values of $5.76,5.10$ and 4.20, respectively. The designs were designated A, B and C and dimensions and weights determined

Motor Designation	A		B	C
Stator OD (exclusive of housing) (inches)	4.10		3.70	3.30
Stack Length (inches)	1.0		1.15	1.15
Weight (active material only) (lbs.)	4.0		3.70	2.95

Performance calculations were programmed on a digital computer, taking into account all first order effects such as stray losses, magnetizing iron losses, magnetic saturation, etc. Results of the computer analysis indicate the performance of the motors at any required operating point.

Motor performance for various torque-speed points over the entire speed range are shown in Figures 6.7.12 to 6.7.14. Figures 6.7.12 and 6.7.13 show the required input voltages and currents of the three motor designs as a function of motor speed. The calculations were made for maximum vehicle loading. Motor design A, the largest, requires the highest line current and lowest line to neutral voltage because it offers the lowest impedance to the power source. If a higher motor voltage and lower current is desirable higher motor impedance can be obtained by increasing the stator turns.

COMPARISON OF THREE MOTOR DESIGNS

Figure 6. 7.13- Line Cusrent vg Motor Speed
D2-83012-1
Page 6.77
(4,

- However, motor design A is 20% higher in efficiency than design C at low speeds as shown by the curves of efficiency vs. speed in Figure 6.7.14a. These curves will help establish the motor weight, fuel consumption, and system weight relationships for planned venicle missions.

In the LSSM appiication, programming the slip frequency is required to permit operation of the induction motors at optimum efficiency at various vehicle speeds. Figure 6.7.140 shows the desired slip frequencies for designs A, B and C as a function of motor speed.

At maximum torque the motors draw the highest currents. However, since torque is equal to a constant times $I_{2}{ }^{2}$, for a given torque motor current can be varied by $\overline{\Delta^{\mathbf{T}}}$
changing the slip frequency. Figure 6.7.15 indicates the sensitivity of motor line current to changes in slip frequency for the three motor designs with a load torque of $1.22 \mathrm{ft}-\mathrm{lb}$. Motor design A produces this torque at a minimum current of 11.4 amps rms and a slip frequency of 4.7 cps . It is important to minimize the motor line current for this operating condition to minimize the required rating of the modulator inverter power transistors.

For the peak torque condition, Figure 6.7.16 indicates how motor efficiency varies as a function of slip frequency.

Figure 6.7.17indicates effiriency and power losses for the three motor designs for various load conditions. The maximum losses were used to determine the required cooling radiator weight as shown in Figure 6.7.18. Motor design A requires the lightest radiator to maintain the case at a maximum temperature of $440^{\circ} \mathrm{K}$. (The following assumptions were made in determining the radiator weight: lunar surface temperature $406^{\circ} \mathrm{K}$; radiator emissivity 0.7 ; absorptivity 0.3 ; view factor to the moon 0.5.)

Figure 6. 7. 14- Efficiency and Optimum Frequency vs Motor Speed
n:-830:2-1
Page 6-79

Figure 6. 7.15-Motor Current vs Slip Frequency

Figure 6. 7. 16-iNotor Efficiency vs Slip Frequency

$\begin{aligned} & \text { MOTOR } \\ & \text { SPER } \\ & \text { RPMA } \end{aligned}$		DESIGNA		UESIGN B		DESIGNC	
		ERF. (\%)	LOSS (matis)	EFF. (\%)	Loss	EFF. (\%)	LOSS IWATTS
12,00	165	37.6	77	55.3	85	55.4	85
5. 200	87	71.4	39	06.1	49	65.8	51
1,300	71	71.2	29	62.8	42	60.6	46
585	57	53.3	49	46.8	65	41.9	79

Figure 6. 7.17-Threc Motor Denigna, Efficiency and Eower Lose

D2-32012-1
Pane 1 -32

On the basis of efficiency and radiator size motor design A was selected for the LSSM traction application. Total motor weight including radiator will be approximately $3.6 \mathrm{~kg}(8 \mathrm{lb}$.$) . Maximum motor efficiency will be about 73 \%$. Figure 6.7 .19 shows approximate dimensions of the motor.
6.7.6 Power Corditioning Circuit

The power ewitch portion. of the LSSM electric drive system consists of a relatively simple three.phase transistor inverter that also functions as the current controller for the motors. Figure 6.7 .20 shows a schematic diagram of the inverter-modulator, a motor load, and blocks indicating the logic and driyirg circuits. In the LSSM drive it is preferred that three motors on one side be energized by one invertermodulator. The present status of the solid state control art indicates that this scheme is less complex and lighter in weight than ising incividual inverters for each motor. However, new control concepts and changes in methods of fabricating transistor power switches could result in a preference for a six inverter drive systern.

All transistors in the inverter-modulater function as programmed switches to convert the d-c battery power to three-phase a-c power. Conduction times of the transistors are determined by the output of the ring counter circuit. Current contro: is accomplished by pulsing the comlucting transigtor $Q^{\prime}{ }_{a}$ or $Q^{\prime}{ }_{b}$ or $Q^{\prime}{ }_{c}$ through the appropriate AND circuit. The diodes connected across the power transistors serve to maintain rotor current flow due to energy storea in the inductances of the motora beiween transistor conauction puleca.

Moror torque is controiled by turning a potentiometer that controls the pulse width of a aimple pulse modulator circuit. Motion of the vehicle is reverised simply by interchanging two of the three output leads to the inverter.

The power switch transietwrs must be capable of supperting the highest posable system woluge and of gwithing the highest required motor currente. High derating factors will insure bigh reliability. For exampie: The propulsion power source voltage wall be jib vdc; the tranaistois might be rated at 200 volts across the collector and emitter or bigher. Tha hirbest expected posk current inay be 24 amperes: the transistorz miprisho rated at io amperes or higher.

D2-93012-1

D2.83012.1
Page 6-85

- Figure 6.7.21 illustrates the input and output current waveforms of the power conditioner circuits. The d-c infut current $I_{d c}$ consists of a series of pulses, the magnetude of which is a function of motor speed and the width of which depends upon the required motor torque. The a-c output current I_{1} is a stepped waveform with saw tooth tops and bottoms. Frequency of the output current is determined by the motor speed and magnitude is determined by the required motor torque.

If an average reading ammeter were ingerted in the $d-c$ current line of Figure 6.7.2l, it would read the average battery current drawn by the electric drive. Figure 6.7.22 illus ${ }^{\wedge}$ rates the average battery current drawn per LSSM drive motor as a function of motor speed for maximum vehicle loading. An a-c ammeter inserted in one of the motor lines would read rms line current. A plot of line current vs motor speed for maximum vehicle loading is shown in Figure 6.7.13. .

In addition to derating, operating the transistors and diodes of the power conditioning circuits at low junction temperatures will also enhance the drive system reliability. Heat generated in the transistors and shunting diodes is primarily due to conduction losses. A plot of inverter-modulator losses per motor is shown in Figure 6.7.23. Maximum non-intermittent power losses in the inverter are about 12 watts per motor or 36 watts for three motors; this condition occurs when a fully loaded LSSM is climbing a 35° slope. Temperature rise of the semiconductor junctions will be maximum for this condition - which will occur during less than one percent of the mission life of the vehicle.

Heat from the power semicenductors will be conducted to a phase-change material heat exchanger that may utilize Technical Eicosan or polyethylene glycol. Power dissipation of each transistor for the above conditions will be about 5 watts. If the junction to case thermal resistance is $1^{\circ} \mathrm{K} /$ watt the junction temperature will be about $5^{\circ} \mathrm{K}$ above the temperature of the phase-change material. A possible packaging arrangement for the inverter-modulator is shown in Figure 6.7.24.

- 6.7.8 System Power Consumption and Efficiency

LSSM electric drive power consumption per motor as a function of motor speed is shown in Figure 6.7.25. Since the vehicle has gix motorized wheels, total power

Figure 6. 7. 21-Power Conditioning Circuit Input and Output Waveforms

$$
\begin{aligned}
& \text { D2-83012-1 } \\
& \text { Page } 5-87
\end{aligned}
$$

D2-83012-1
Page 6.88

Figure 6. 7. 23-Inverter-Modulator Power Losses va Speed

Figure 6. 7. 24-Inverter-Modulator Packaging Arrangement

Figure 6. 7. 25-Motor-Inverter Input Power so Speed

D2-530:2-1
Fage 6-91
consumption will be six times that shown on the curve. Maximum steady state - power of about 900 watts will be required at speeds of 650 rpm and $12,000 \mathrm{rpm}$ for maximurn vehicle loading.

The efficiency of the LSSM electric drive system as a function of motor speed is shown in Figure 6.7.26. Conditions for which the efficiency was calculated are a 56 volt dc power source and maximum vehicle loading.

Total inverter and motor losses were included in the calculations. The drop in efficiency at the high speeds is due primarily to bearing friction losses. Measurements of the efficiency of the MTA drive system closely approximate the calculated efficiency of the LSSM electric drive.

6.7.9 Reliability Discussion

Analysis of the failure modes of an electric drive wheel operating on the lunar surface indicates that a wheel assembly utilizing an a-c motor will be more reliable than one using a d-c motor. The commutator of a d-c motor requires a gaseoss environment at a pressure greater than $5 \mathrm{~mm} \dot{\mathrm{Hg}}$, must be operated at temperatures below $470^{\circ} \mathrm{K}$, limits the maximurn speed of the armature to several thousand rfm below induction motur speeds and generates heat due to mechanical friction and electrical resistance. Scant information is available on commutator reliability when operated at zelatively high temperatures in sealed enclosures. Because of the large effort going into making semiconductor switches reliable devices, much more data and experience that enables one to predict the proba'sle reliability of a vell designed inverter system.

Failure rate studies of electric machines conducted in the past indicate that for all possible uses, operating conditions, and abuses, the failure rate of $d-c$ machines is two to three times the failure rate of a-c machines. If attempts are made to design equivalent weight $d-c$ or a-c machines, there appcars to be an inherent failure rate penalty associated with d-c machirics. Reliability studies have indicated that an a-c urive system can be designed with a reliability equal to or - higher than that of a d-c systerr. Of major importance is the fact that the a-c motor power wheel will have a much greater reliability than the d-c motor powered

Figure 6. 7. 26-LSSM Electric Drive Inverter-Motor Efficiency

D2-83012-1
Page 6.93
wheel. The reasons are as follows:
(1) Heat dissipation caused by commutation is eliminated from the wheel.
(2) The rotor of the a-c machine can be a nearly solid structure compared to a wire wound $d-c$ rotor.
(3) Wheel assembly weight is less because of the higher a-c motor speeds and removal of commutator and brushes.
(4) The a -c motor can continue to operate even though the motor enclosure is broken and the gaseous environment is lose. Heat transfer analysis shows an a-c drive motor mounted in the LSSM w ' eel will operate even in the vacuum environment. Life of the drive mec hanism will be limited by the bearing and gear lubricants. But since dry lubricants can be used, 100 to 200 hours operation may be obtainable after the bearing seal is broken.
(5) A d-c drive motor system will require a one-or two-step gear shift if the eificiency of an a-c drive system is to be approached. This gear shift would be located in the wheel and would reduce drive mechanism reliability.

Therefore, the actual reliability of the wheel assembly of the a-c system is significancly superior to that of the $d-c$ system. A failure in the $d-c$ drive system is most likely to occur in the commutator -brush assembly, a place where maintenance is difficult to perform and where redundancy cannct easily be provided. A failure in the a-c drive system ir most likely tn occur in the inverter. The inverter can be located where maintenance tasks can be performed. Redundant inverters can also be used.

Highest transistor current stress occurs at wheel speeds of from 2 to 5 rpm when the vehicle is obstacle climbing or climbing 35° slopes. High 3 st junction temper atures occur at nearly the same speeds. An analysis of the LSSM probable mission indicates that peak currents are required less than 1 percent of the time. For about 45 percent of the mission time current demand per motor will range from

- 2 to 4 amperes. No current is required for almost 24 percent of the time due to D2-83012-1
vehicle movement from higher to lower elevations.

T.7.10. LSSM Electric Drive System Summary

Electric drive system performance characteristics, power losses and major component weights have been discussed. In addition, methods of drive motor control have been presented. Motor and power switch specifications were given.

In brief: The electric drive system will produce a peak torque of $1.22 \mathrm{ft}-\mathrm{lb}$ ($1.65 \mathrm{~N}-\mathrm{m}$) at a wheel speed of 2 rpm , a maximum continuous duty torque of $0.69 \mathrm{ft}-\mathrm{lb}(0.93 \mathrm{~N}-\mathrm{m})$ at 5 rpm , and $0.06 \mathrm{ft}-\mathrm{lb} .(0.08 \mathrm{~N}-\mathrm{m})$ at the maximum wheel speed of 92 rpm . This latter speed represents a vehicle velocity of approximatel: $16 \mathrm{~km} / \mathrm{hr}$ (10 mph).

Maximum steady-state input power will be approximately 900 watts at a wheel speed of 5 pm and at a vehicle speed of $16 \mathrm{~km} / \mathrm{hr}$ for maximum vehicle loading. Maximum drive efficiency will be about 75% at $10 \mathrm{~km} / \mathrm{hr}$. Each drive motor will weigh about 3.6 kg (8 lb) including the heat radiator. Total weight of the power conditioning equipment and electronic control circuitry will be approximately 14 kg (30.8 lb) exclusing the phase-change heat exchanger, circuit breakers and connecting cables.

These specifications provide the functional and performance requirements for the baseline LSSM mobility system. The mobility system encompasses the following subsystems:

- Wheel Assembly
o Wheel Drive Mechanism
- Suspension System
- Steering System
- Chassis - Frame Assembiy

0 Electric Drive System

7. 2 APPLICABLE DOCUMENTS

- "ALSS Payload Design Criteria; Structural Design Criteria", Prepared by Hayes International Corporation for R-P \& VE-AL, NASA MSFC, Under Contra $=$ NAS 8-5307, June 29, 1964.
- "MOLAB Structural Design Criteria". Boeing Document DZ-82068, Prepared Under Contract NAS 8-11411, August 1964.
o GM DRL Drawing Nos. PD-00810, PD-00313, PD-00816, PD-00820, PD-00821, PD-00822, PD-00823.
- Engineering Lunar Surface Model (ELMS), KS C TR-83-D

7.3.1 Overall Mobility System

The purpose of the mobility system is to function as a mobile platform, day or night, capable of negotiating the soils, slopes and obstacles of the lunar surface, while providing maximum probability oi crew saiety and mission success. It shall have the capability of accommodating an astro-naut-driver and approximately 700 lbm of scientific equipment, as well as the nesessary power, thermal, navigation and communications systems.

It shall be capable of negotiating the surface profiles specified in ELMS at a minimum average speed of $5 \mathrm{~km} / \mathrm{hr}$, and maintain speeds of at least $16 \mathrm{~km} / \mathrm{hr}$ over level hard ground and $5 \mathrm{~km} / \mathrm{hr}$ over level soft ground with soil characteristics $k_{\emptyset}=0.5$ and $n=0.5$. The minimum mission range will be 200 km over a 14 (earth) day period.

7.3.2 Wheel Assembly

The wheel assembly shall consist of the following major components:

- wheel disc o stiff inner frame
o rim o tread
o woven wire outer frame

The design of the wheel shall conform to the configuration of GM DRL drawing PD-00821, and the functional capabilities and limitations as specified herein.

Emphasis shall be placed on reliability, minimum weight, performance, and compatibility with the lunar environment. Six wheel assemblies shall be used to support the LSSM vehicle and to traniomit driving torque io the lunar suriace. The wheel disc, which shall be attached to the dirive mechanism wheel hut, shall be a spun conical frustrum. The rim shall
be flanged to provide stiffness and shall be rigidly attached to the wheel disc. The spring wire outer frame shall consist of 540 interwoven wires in a 0.375 mesh. Suitable materials shall be utilized for the right -hand - and left-hand wires to reduce the possibility of vacuum cold-welding at the points of intersection. The ends of the spring wire outer frame loops shall be rigidly attached to the rim. The stiff inner frame shall be rigidly attached to the rim and shall consist of 36 loops interconnected by hat section circumferential rings.

The tread shall cover the normal running surface of the wheel, and shall consist of a specially woven wire braid, or separate metal lugs.

The wheel sub-assembly shall be capable of reacting the following dynamic forces:

0	limit radial wheel load	$5204 \mathrm{~N}(1170 \mathrm{lbf})$
0	limit lateral wheel load	$578 \mathrm{~N}(130 \mathrm{lbf})$

The wheel sub-assembly shall be capable of reacting or transmitting $165 \mathrm{~N}-\mathrm{m}(120 \mathrm{ft}-\mathrm{lb})$ of torque. The wheel shall be capable of a maximum speed of 92 rpm . The wheel shall be capable of completing 100,000 revolutions without significant deterioration of performance. The wheel disc shall provide for attachment of the wheel assembly to the wheel drive mechanism wheel hub. The rim shall provide for attachment of the stiff inner frame and flexible wire outer frame. The spring wire outer frame shall be the primary load supporting structure of the wheel assembly. It shall deflect 4.30 cm (1.70 in) at the nominal wheel load of $289 \mathrm{~N}(65 \mathrm{lbf})$. That is, the outer frame shall have a spring rate of $66 \mathrm{~N} / \mathrm{cin}(38 \mathrm{lbf} / \mathrm{in})$.

The stiff inner frame shall prevent excessive deflection of the spring wire outer frame and shall absorb maximum dynamic loads. It shall have a spring rate of $36,20 \mathrm{~N} / \mathrm{cm}(2074 \mathrm{lbf} / \mathrm{in})$.

The tread shall protect the wheel covering from abrasion and provide a $\begin{array}{ll}\text { gripping tread for traction. } & \text { D2-83012-1 } \\ \text { Page } 7-4\end{array}$

7.3.3 Wheel Drive Mechanism

The wheel drive mechanism (WDM) shall consist of the following major elements:
o wheel hub
o brake system

- harmonic drive o wheel drive housing
o spur gear reduction 0 wheel drive disconnect
o electric drive motor o radiator

The design of the WDM sinall conform to the configuration of GM DRL draving PD-00813, and to the functional capabilities and limitations set forth herein. Emphasis shall be on reliability, performance, minimum weight and compatability with the lunar environment.

The WDM shall drive the wheel assembly of the LSSM vehicle. The wheel hub which supports the wheel shall be the driven member of the mechanical drive. The WDM shall be supported by the steering pivots of the Ackermann steering actuators at the forward and aft axle wheels; and by the suspension system at the center axle wheels.

The WDM shall be capable of operating in either direction or braking the vehicle when the drive is not energized. All electrical and high-speed mechanical components shall be enclosed in a hermetically sealed chamber. A manually operated wheel drive disconnect shall be incorporated to declutch each wheel from the WDM for emergency operation. Each WDM shall have a passive radiator located outboard of the wheel for cooling, and at a minimum, the four wheels of the forward unit shall be capable of being braked by manual ineans for pur poses of parking. Instrumentation shall include a temperature transducer, pressure switch and odometer.

The WDM shall provide, at a minimum, the output torque-speed characteristics shown in Figure 7.3.1. These are summarized as follows: $6 \mathrm{lb}-\mathrm{ft}$. at 92 rpm , $68 \mathrm{lb}-\mathrm{ft}$. at 5 rpm (maximurn contiruous duty), and $120 \mathrm{lb}-\mathrm{ft}$. at 2 rpm (intermittent).

D2-33012-1
Page 7.6

A size 25 harmonic drive unit shall provide a gear reduction of $88: 1$ for the output oif the WDM. This unit, coupled with the WDM housing, shall provide the hermetic sealing capability. The wave generator of the harmonic drive shall be coupled directly to the electric drive motor. The flexspline is a thin-walled member in contact with the wave generator. The elliptically snaped wave generator deflects the flexspline in two diametrically opposed areas, and causes the external teeth of the flexspline to engoge with the internal teeth of the harmonic drive circular spline. The output of the harmonic drive is the circular spline which shall have gear teeth also on its outer circumference. The outer teeth of the circular spline shall engage three small pinion gears which in turn shall drive a ring gear attached to the wheel drive. This final reduction due to the use of intermediate pinion gears shall be equal to $1.5: 1$.

Disconnecting of the WDM from the wheel for ernergency operation shall be accomplished manually by a single release device that will disengage the ring gear from the wheel hub.

A conventional duo-servo two-shoe brake assembly shall be utilized for the service brake. Actuation shall be by a pilot shoe assembly which is contrclled by a small short stroke solenoid. Minimum braking torque skall be such that with the electric drive motor de-energized, there shall be no rotation of the wheel drive mechanism when subjected to an external torque of $12.0 \mathrm{lb}-\mathrm{ft}$. ($165 \mathrm{~N}-\mathrm{m}$). The service brake shall be capable of dissipating a peak power load of approximately 560 watts, and an average continucus load of 40 watts. For purposes of parking, the brakes shall be actuated by means of a cam device in parallel with the solenoid armature, controlled by means of a manual pushpull cable.

The wheel hub shall be supported by two main bearings mounted on a circular housing attached to the suspension system. The wheel shall be attached to one end of the wheel hub. The wheel drive mechanisrn housing, in conjunction with the harmonic drive flexspline, shall provide a hermetically sealed chamber for the mechanism. The clectric dmive motor, spur gear reduction, service brake,
and instrumentation shall be located with the flexspline - housing envelope. The hermetically sealed chamber shall be charged with a suitable gas at a nominal pressure of four psia such that the high speed mechanical and electrical components are protected from the low pressure lunar environment.

A temperature-compensated pressure switch shall be located within the hermetically sealsd mechanism. It shall actuate whenever the initial pressure (corrected for temperature) has changed by 25 percent, pius or minus three percent, over a nominal temperature range of minas 250 degrees to 500 degrees F. Two temper ature transducers shall be provided to monitor motor winding and motor bearing temperatures. The transducers shall be capable of a range of temperature measurement fism - 250 to 500 degrees F with a maximum accuracy of plus or minus three percent. Odometer requirements shall be as required by the Navigation System. (See Section 7.3.7 of this repori.)

The wheel drive mechanism shall be capable of operation regardless of its orientation. It shall be capable of cornpleting a minimum of 100,000 revolutions of nominal operation without difficulty, malfunction, or repair. The wheel drive mechanism shall be designed and constructed su.h that, when supplied with vcltage and power, the mechanism will meet the performance requirements specified herein.

The electromagnetic service brake shall operate from a source voltage of 28 volts $d c$ and shall have a naximum power drain of 30 watts. The pressure monitoring switch shall operate on an applied voltage of approximately 28 volts dc and 0.2 amperes.

Require:nents for the electric motor are given under section 7.3 .7 of this specification.

The suspensionsybtem ansembly shall coasist ot the following major componenis:

The design al the matmonam asarenbly whall ernform to the configuration of GM DRL, drawing blb-00k22, and the functional capabillites and limitations as opecified hermin. Empham! sliall be placed on reliability, minimum wetght, performanee and compatitulty ath the lunar environment. Six
 sorb fynamic lade resulting irom operation on the linar surface, and
 and mapmant artery.
 :0 : in Chasnientrarrir mitavatem.

 fixed to the upper armata shafin-iparme boturen the wapenalon mounting

 sinsling shall tre ferwitet by meats of a bellows.

 DEA№.2.-1

- …

The steering system for LSSM shall consist of two essentially identical steering actuators to result in Ackermann-type steering of the front wheels of the forward unit and the aft unit wheels. The two actuators shall be connected by means of a flexitle shaft to aid in wheel angle synchronization in turns.

Each actuator shall consist of the following major components:

0	Electric Motor	o	Cross Link
0	Gear Box	o	End Housing
0	Mechani. m Housing		

The design of the steering actuator shall conform to the configuration of GM DRL drawing PD-00816, and the functional capabilities and limitations specified herein. Emphasis shall be placed on reliability, performance, minimum veight and compatibility with the lunar environment.

Two actuator assemblies shall be used to position the wheels; one for the front wheels of the forward unit, the other for the aft unit wheels. Each actuator shall be attached to the chassis-frame structure and the steering links connected to the wheel drive mechanism. Each steering actuator shall be capable of positioning the wheels up to 25 degrees from the normal wheel centerline. It shall be capable of maintaining any given position againat cxternal nominal loads. Switches shell be provided to prevent excecding the maximum steering angle by cutting power to the steering motor.

All functioning electrical and high speed mechanical components shall be enclosed in a hermetically sealed housing. The pressure in the hovsing shall be monitored by a simple temperature compensated pressure switch.

A temperature transducer shall be provided to monitor motor temperature. An emergency release for the mechanism shall be provided. Ingress and egress of electrical wiring at the mechanism shall be accomplished using a hermetically sealed connector.

The steering actuator shall have the following minimum torque -speed characteristics: $260 \mathrm{ft}-\mathrm{lb}(352 \mathrm{~N}-\mathrm{m})$ at a steering speed of 0.1 rpm (0.6 degrees $/ \mathrm{sec}$); $20 \mathrm{ft}-1 \mathrm{~b}(27 \mathrm{~N}-\mathrm{m}$) at $1.0 \mathrm{rpm}(6.0$ degrees $/ \mathrm{sec})$; and $12 \mathrm{ft}-\mathrm{lb}(16 \mathrm{~N}-\mathrm{m})$ at $2.5 \mathrm{rpm}(15.0$ degrees $/ \mathrm{sec})$. In addition, the actuator must be capable of developing a resisting torque of $407 \mathrm{ft}-\mathrm{lb}(552 \mathrm{~N}-\mathrm{m})$ to withstand longitudinal load inputs through a wheel centerline.

Each actuator shall have an overall speed reduction of approximately $1250: 1$ and be capable of developing a thrust of $1675 \mathrm{lbi}(7450 \mathrm{~N})$, a rate of travel of $1.08 \mathrm{in} / \mathrm{sec}(2.7 \mathrm{~cm} / \mathrm{sec})$, and a total stroke of 2.2 inches $(5.6 \mathrm{~cm})$.

A drive assembly, consisting of motor, spiroid gear set and ball nut and screw, shall provide the torque-speed requirements described above. The drive motor-gear reducer combination ohall drive the ε piroid gear set which in turn shall drive the ball nut and screw. The screw is part of the cross-link assembly that positions the wheels.

The actuator shall be driven by a de permanent magnet motor, operating from a 28 volt dc power source. The motor sin ll be reversible and capable of withstanding intermittent stall loads for 30 seconds. The motor shall have a rated power output of approximately 30 watts with the corque/ and power/apzed characteristics shown in Figure 7.3.2. Efficiency of the motor shall be at least 60% at rated nominal conditions.

The spiroid gear set shall provide a speed reduction of 38:1. It shall have
(SHEM) \& 3 MOd IndInO yOLOW

D2-83012-1
Page 7-12
nominal ratings of 100 in . lb of torque, 0.067 HP input at 1750 rpm , and 0.038 HP output at 1750 rpm .

The ball nut and screw shall provide a speed reduction of 33:1. It shall be capable of withstanding operational loads up to 2200 lbf.

An emergency shall be provided on the end housing so that the wheels may be steered by means of a manual input. This emergency input shall be by means a rack and pinion on the forward unit actuator driven by a ratchet handle.

Steering contros shall be by means of a driver operated sidearm control. The control system can be either an open or closed-loop system.

The entire mechanism shall be hermetically sealed and charged with a suitable gas at a nominal pressure of 4.0 psia such that all high speed mechanical and electrical components of the mechanism are protected from the low pressure lunar environment.

A temperature compensated pressure switch shall be located within the hermetically sealed chamber. It shall actuate whenever the initial pressure (corrected for temperature) has changed by 25 percent, plus or minus 3 percent, over a nominal temperature range of minus 250 degrees to 500 degrees F. This switch shall operate from a 28 volt de power source. Limit switches shall limit maximum steering position of the mechanisms in either direction. These switches shall operate on applicd voltage of 28 volt $d c$ and have a rating of 0.5 amperes.

Temperature transducers shail be provided to monitor steering motor winding temperature. Range of temperature measurement from -250 to 500 degrees F with a maximum accuracy of plus or minus three percent shall be provided.

Steering actuators shall be capable of completing a minimum of 6,000 cycles of nominal operation without difficulty, malfunction, or repair. The steering actuators shall be capable of operation regardless of its orientation. The mass of a single actiator mechanism shall not exceed 17 lbm (kg).

7.3.6 Chassis-Frame Assembly

The chassis-frame subsystem shall consist of the following major assemblies:

- Forward unit frame assembly
- Aft unit frame assembly
- Flexible frame assembly

The design of the chassis-frame subsystem shall conform to the configuration of GM DRL drawing PD-0C820 and the functional capabilities and limitations specified herein. Emphasis shall be on reliability, minimum weight, performance and compatibility with the lunar environment.

The chassis-frame assembly shall provide the basic support structure for the entire LSSM vehicle. It shall provice attachment points for the suspension system and steering mechanisms, and provide means for ascommodating crew system and scientific equipment, as well as the power, navigation, communications and thermal subsystems.

The chassis-frame structure shall be capable of withstanding repeated flexures and shock loads, and shall permit a minimum of 90 degrees for the angels of approach and departure of the assembled vehicle.

The chassis-frame subsystem shall provide for the retraction and extension of the flexible frame permitting in-flight stowage aboard and deployment onto the lunar surface from the LEM/Shelter.

The design of the chassis-frame subsyotem chall permit the following relative displacementa between the forward and the aft unite:

D2-83012-1
Page 7-14

The forward unit assembly shall consist of an aluminurn box structure with an integral rail structure for flexible frame retraction. The chassis rails shall be capable of withstanding the reactions of the following dynamic loads as well as those specified in D2-82068:
o Limit vertical wheel load
o Limit lateral wheel load

- Limit longitudinal wheel load

$$
\begin{array}{r}
5,200 \mathrm{~N}(1,170 \mathrm{lbf}) \\
578 \mathrm{~N}(130 \mathrm{lbf}) \\
10,200 \mathrm{~N}(2,300 \mathrm{lbf})
\end{array}
$$

Four pairs of mounting brackets for the four forward unit suspension assemblies shall be provided. There shall be guide tracks for operation of the retractable flexible frame. Provisions shall be made to accommodate the flexible frame locking mechanism and for attachment of the steering actuator for the forward wheels.

The aft unit frame structure shall provide attachment points for the rear wheel suspension assemblies and steering actuator, and provide support for a thermal compartment containing power system and navigation, communications and dirive electronics. The aft unit shall be able to with stand the loads specified above.

The flexible frame assembly shall control the relative attitudes of the aft and forward unite in pitch and roll. The assembly shall consist of the flexible frame, pitch limiter, and pitch limiter bracket, and shall provide an "elastic coupling" of the forward and aft units. During the stowage mode, the flexiole frame shall have the capability of being retracted aiong the guides of the forward unit rails. At deployment the flexible frame shall have the capability of being extended to its operating position. Two locking mechanisma (one for each rail) shall be provided to secure the flexible frame in the locked or extended nosition.

The flexible frame shall limit freedom of roll between the two units to plus or minus 30 degrees and shall be capable of reacting the loads specified above.

The pitch limiter shall restrict the pitch freedom of the aft unit to plus or minus 15 degrees. A means shall be incorporated into the limiter so that it can be stowed between the forward and aft units. A mechanism shall be provided at the forward unit to lock tine pitch limiter into operating position when the vehicle is deployed. The pitch limiter shall incorporate snubber springs to react impact loads. The pitch limiter bracket shall provide for the securing of the aft end of the pitch limiter. It shall serve as a spacer and fixity for the aft end of the flexible frame.

7.3.7 Electric Drive System

The electric drive system shall consist of the following major elemerts:
o Motors

- Power Switching
- Controls

The electric drive system shall perform the following functions:
o Convert electric energy produced by the battery system into mechanical energy to drive the LSSM wheels.

- Control vehicle speed in response to commands from the manned control locips.
o Supply wheel velocity information :or the navigation systern.

The design of the electric drive system (EDS) shall conform to the functional capabilities and limitations as specified herein. Emphasis shall be placed on reliability, minimum weight, efficiency, controllability, performance and compatibility with the lunar environment. The EDS shall be capable of propelling the vehicle in either direction at the command of the driver. Cooling of the power switching and control elements shall be accomplished by a phase change material heat exchanger system.

The EDS mutor shall be an ac squirrel cage induction motor. It shall be bolted to a flange on the wheel drive mechanism and drive an $88: 1$ stepdown harmonic drive. Heat transfer shall be accomplished by radiation attached to the case. The motor case and radiator are parts of the wheel drive mechanism.

The motor shall be energized by cables running from the wheel mechanism to the aft unit thermal compartment in which the power switching and control elements are mounted. The power switching circuits shall be controlled by control elements which receive signals from the digital tachometers mounted on the motor shafts, and from the astronaut's side-arm controller.

The EDS motor shall be capable of producing an intermittant torque of 1.7 N-meters ($1.2 \mathrm{ft}-\mathrm{lb}$) at 0 to 260 rpm and a maximum steady-state torque of 0.84 N -meters ($0.7 \mathrm{ft}-\mathrm{lb}$) at 650 rpm . Maximum steady-state power output shall be 95 watts at $12,000 \mathrm{rpm}$. Maximum motor weight including radiator will be 3.6 kg . Maximum overall motor dimensions shall be 5. 0 inches O. D and 40 inches length.

The power ewitch subsystem shall produce a stepped, alternating, threephase voltage varying from 0 to a maximum valtage of 56 volts peaic. It shall be capable of delivering a maximum current of 25 amperes peak. The power switching equipment is controlled by the control system which will receive signals from digital tachometers mounted on the motor shafts and from the drive console unit. The controls shall be mounted in the aft unit thermal ecmpartment. The control elements shall receive motor speed signals and drive and steering commands, and control the voltages and frequencies applied to the drive motors. They ehall control the speed of the vehicle in forward or reverse, and siall enable the vehicle to skid otecr in an emergency mode of operation.

To interface with the navigation system, each wheel sransducer shall produce a pulse train output specified as follows:

1. Pulse ampiitude - Any amplitude between 6 and 28 volts.
2. Pulse width - Between the limits of 1 and 10 milliseconds.
3. Pulse rate - 128 pulses per meter or greater.
4. Pulse spacing accuracy - $\pm 3 \%$.
5. Rise and fall time - 0.1% (or less) of pulse width.
6. Load impedance - 50,000 ohm or greater.

The pulse rate specified shall be the minimum acceptable. The rate may be increased to a higher value as long as it is a binery multiple of distance (in meters). A +6 volt $d=$ signal is required for the navigation system interface when the vehicle is going in reverse. This signal will instruct the distance computer to subtract whe liansducer output pulses.

The steering and drive coramand signals shall be of the analog type rarying from 0 to 5 volts dc. Input impedance of the control subsystem shall be 1,000 ohms or higher.

Power switching shadl be designed to operate from a batiery voliage of 56 volts dc with voltage excursions from 52 to 71 volts cic. The controis shall be designed to operate from a battery voltage of 28 volts de ± 1 voit.

Maximum weight of the electric drive system shall be $30 \mathrm{~kg}(86 \mathrm{ibm})$, including inverters, motors, cables and circuit breakers. Average efficiency of the drive system shall be greater than 50 percent.

8.0 FAILURE MODE AND RELLABILITY ANALYSES

8. 1 FAILURE MODE AND EFFECT ANALYSIS

8.1.1 Introduction

A failure mode and effect analysis was conducted for the LSSM mobility system consistent with the guidelines of Boeing Company memo 2-5022-66, "LSSM Reliability Prediction and Failure Mode Analysis'", dated 20 December 1965. Such an analysis is useful for making system level reliability predictions for the LSSM.

Each major component of the mobility system was reviewed for significant failure modes wi:ich would adversely effect the intended function of the component. Significant failure modes were listed with possible causes. Effects of each failure on the component and on the mobility system were also determined. The seriousness of each failure was considered and indicated by a "criticality rumber". Possible actions to relieve the adverse effects of each failure were listed.

8.1.2 Conclusions

A review of the results, using a conservative approach, suggests the more serious failure modes to be associated with:
(1) loss or excessive dislocation of more than one wheel.
(2) parting of the forward chassis c.r fexible frame.
(3) total failure of the drive electronics system.

Each of these failure areas involves almost certain abandomment of the vehicle, with loss of iife if failure occurs outside the walk-back radius in the traverse.

3.1.3 Discussion

The results of the failure mode ard effect analysia are given in the 9-page attachment at the end of this section. Most of the features listed are not critical due to the many redundant design features
of the six-wheel configuration. Several of those failures listed as serious would involve a significant time factor before vehicle abandonment would be necessary. This time could be used to minimize the distance to the shelter.

Comments pertinent to the contents of the attachment are as follows:

Component Identification - This column lists each of the major mobility system components.

Function - The function of each component is considered to aid in determining all significant failure modes.
Modes of Failure and Causes - Modes of failure arelisted consistent with component functions. Potential causes were determined from review of the component drawings.

Effects on Component and Subsystem - Listed are the effect of each failure mucie on the performance requirement of the component and on the subsystem performance.
Criticality Number - The number refers to the expected seriousness of the failure under consideration as follows:
(1) High probability of causing loss of life.
(2) High probability of causing disablernent of LSSM, but no immediate loss of life.
(3) Seriously degrades the usefulness of LSSM, but does not cause abandonment,
(4) Less serious than (3) but would cause the LSSM to be kept within astronaut's walk back capability.
(5) Least serious and might not cause restrainment of traverse.

Alternates - Alternate modes of operation and other corrective actions that might be used to get the LSSM back to the LEM/Shelter should the failure occur.
L"

Pare 2
LS5M MOSILTY SUBSYSITM - TAliuse MOde and EIfect donlyal.

Page 8-4

Compenart Miondtication	runction	$\begin{aligned} & \text { Madas of rulture } \\ & \text { enc causes } \end{aligned}$	ETfECTS		Cruesuty	
					Number	Altematas
Whee:	Provides tractlor and minlimlaes con:oct presp 345.	Lass of traas: (a) witir ena danajed tron rough tertain.	Dejretins eazabillt; o! wicel.	Degrajex capabsiltiet in soh soll, rars e. laces, and zesmate cdmeling,	4	Sux-wheel design provides: yood relumaney. Wrioel etructure raduchant.
	Proustus suppre and shock absorti:p capabllify.	Spring wire outer fame falls: 2.!lecent wite hoop tall. csusin: weak area wrict. conlunies ts widen as hoops are stressed. (a) Wi:n-restrandny emporion:s fall. (i) Ciliols) ovorities,od by shait ioch a thaj e: zurch. wich true late is juakzo. (c) wios vese ox:esiorciy the :a hus of tecos.	weel tn:e jrtey 3:3nthean:l/ de- rased.	Slonatscant pionabllity of retactint longth al tuaverse. Jperoung speet wo.! te otrersely elle: :	3	fhedl drapalrov, due to rem Juces diembter, could be elamireted by opereung discorreter mechanism. Whesl wie" edumitency.
		Stit! traer fir:ie talle: tiariment loeis. (ti) Reverashop paris tast. ($九$: Desepad s-bse fuent to $1=x$, of auter treme.	frieal lrielu, revertr sejrucas.	- Nate voloctirm: toe recheces in mish mid 4a-s ze to rosetric. -omporects. Abendwrent would be per-$\rightarrow-$ Ele be red on sub. whateat misel interpration.	3	Su-xatoel ruduntarty givo.. som: protactuon exolnst ebsndonmat:

D2-83012-1
Page 8-5
D2-83012-1

Ccaponent ideruflication	Punction	Moves ul fallure orut cissos	efricts		Crtiseduty Number	Alternetes
			on zomponent	On subsyatea		
Wheel (conisinuad)...	(conulnued).....	Wheel zollopses ar becomes completaly seterened: 1. Kamendiot wheel tlse collopse or seperate. (a) Ovesituessing tern excessive transient linds. (of Dmmagod due to $1 \times m$ mo ose las: of laner trame. (c) an - 10 -wheal dige testeners foll. 2. Wheel hub festereis tall.	Totel cepability list.	High probebtlit. of vehicle abendorsenen: with second wheel fallure.	2 11- If ou:sise walkbek raitus lot 2 iasicres 3 for owe isthure	Sla-whel design mult sllow poeration subsequent to !list fellure in all but rough terratn. Second such terliure winla probably caluse abando ment descending on terrain.
Suspension	Supporte mheol. Controls wheel. absoxbs shock.	10int: dis not plvot: 1. Bearim surfscen 1amazel. (a) Parts cold weld (b) Deanejod dat to marellgnEent. (c) Intrualan of toreliza perticles. 2. Deanper jams.	Suspension will ildo sull.	Langth o! taverse ser be rempoed il melocity must be ssgniticanily roduced t.) evotd overatiessite o! criteme and maloinin a resecomble tivul of dide comfart	4	Number of tumints le-rens pos-iblutr of espastacens groblean .
		Demper fallo to restrain action: (a) Structural pars: lall (a) Restrationg median last.	Wherd cuatrod 19gratod. Sellection atits lost It samper parts.	IHisy require slowet sperd oportilon Lepexding on terrain.	4-5	Six indeperdant demper units lessen poselbility of algni- 1 flicant problim.

Page 8-6

Page 8-7
isSM Mosintir sumisitw - Fellure Mode and Effect Analysle

Page 7

Lise MOskity susiritin - Falluro Mode and Efloct Aralyals
issm mosirty subsysta - Fulhure Mato and Effoct healyale

D2-83012-1
Page 8-10
Pege:
Page 9

issm mobnity suesysicm - Fallure Mato and Effect Analysis

8.2.1 Introduction

The reliability analysis results presented herein are based on the "Alphonsus Single LSSM Mission" as defined in "Preliminary Design Study of a Lunar Local Scientific Survey Module (LSSM)", First Interim Report, September, 1965, Boeing Document D2-36072-4. This mission consists of twelve manned sorties with travel times ranging from 0.4 hours to 4.0 hours, followed by a remote traverse of 50 hours travel time. Total travel time for the twelve sorties is approximately 38 hours.

Assuming the usual rigorous development program the numerical results of his study represent an estimate of the achievable level of mobility system reliability for the twelve surties. The remote portion of the mission is not considered.

The reliability values contained in this report are based on related MOLAB data and currently available failure rate data. The analysis assumes that the design is adequate to perform as intended in the environment to be encountered. Further, it is assumed that wear and fatigue, are not significant factors for the relatively short operating times described above, except as adversely influenced by cisality defects.

8.2.2 Conclusions

With respect to the "Alphonsus Single LSSM Miasinn". it was estimated that the reliability of the mobility system would be $c .992$ is for the 12 sorices. Thie value represents the probability of the motility eystem not causing mission abort during the 33 -hour total operating tirse. This malue may be conservative ance wome failures may be repairable, depenting on the nearnenn of the vehicle to the shelter when the failure occurs if previsions for repair are included.

Figure 8.2.1 shows the LSSM baseline concept. Figure 8.2.2 presentis a block diagram of the mobility ayatem with the probability of ouccese values for each subsyaterm. The values apply to the 12 manned corties.

Figure 8. 2.2-LSSM Mobility System Reliability Estimates - 12 Manned Sorties Mission

D2-83012-1
Page 8-14

The reliability estimates determined for the mobility system emphasize the value of redundancy in design. The wheel drive mechanisms, the most complex of the subsystemu, were determined to have a negligible probability of failure as a subsyatem. Thi\# in Jue to the ability of the subsystem te zontinue adequate functioning with, conservatively, only four drive mechanisms driving.

8.2. 3 Discumsion

The following discussion presents a statement of the problem, a definition of the mission, the approach uned, and comments relative to determining the reliability of the mobility system comporients.
a. Definition PI Problem.

In order to gain insight into what attainable probability of mission suecess might be expected of a LSSM vohicle, the Boeing Company has undertaken to estimate the achievable level of reliability of the LSSM system, assuming a normally rigorous dovelopment program. In order to determine the over-all mission reliability, a simllar estimate was required for the mobility system, the results of which are presented herein.
b. Haseline Mismion Definition.

The mianion operating profile chosen for this estimate is ahown in Figure 8.2.3. The remote portion of the mission is not considered in this reliability estimate. The misaion involved in this estimate can be simplified to one uperating feriod of 38 heure.
c. Approchto Eatimxing Keisability

Uac of fallure Rate Unea. A reviaw of all known sources of mechanical faiture fate data resulted in the selection of the following data sources for the aubject etimatson:

- Compendsm of Fallure Rate Data for Polaria Missile Hardware, LNBE - 901280 . 1 November 1963.
a Rolubulity Stresand Fabiure Rate Data Coz Electrical Equipment, MiL-HDBF-217. 8 Auguat 1962.

	Nooomnoounomo - inj in iNiNinini mi
	mmo.000000000 \%
$\begin{aligned} & \frac{z}{0} \\ & \frac{2}{n} \\ & \frac{2}{\Sigma} \end{aligned}$	$\sim \sim m+\infty \in \infty \quad 1$

[^4]D2-83012-1
Page 8-16

Although it is not an objective of this memorandum to explain the detailed procedures of a reliability estimation effort, some comments relative to the failure rate data seem appropriate.

Failure rate data must be construed to be data accurnulated for "random" failures which were not time dependent. Time independence implies a constant probability of instantaneous failure. Only with the condition of time independence can the available failure data be used in a legical and correct manner. When using such data, the following assumptions are made: (1) the design is adequate to perform as intended in the environment to be encounter ϵd, and (2) wear and fatigue are not reflected by the failure rates except as the result of quality d fects.

Failures which are used in compiling failure rate tables would be expected to be caused by one or more of the following: (1) quality defects, (2) abnormal environmental spikes, (3) undetected design deficiencies, and (4) wear and fatigue. A descending order of frequency of encounter would be expected. Wear and fatigue-induced failures would be expected to be infrequent since much of the basic data are from areas of use where preventative maintenance by replacement of parts is common. The significance of the error caused by the inclusion of wear/fatigue railures in the basic data should be materially reduced by the "perfect design" assumption applied to the components under consideration.

Factors to Mocify Basic Failure Rates - Several factors were used to modify the basic failure rate data to bring them in line with the conditicns of use on LSSM. These factors, as appearing in Attachment 8.2.1 are explained ab follows:

t - mission time.

Mission time is usually considered to be 38 hours as previously discussed. Rather than using a full 38 -hour mission time for intermittent-operating components, estimated curnulative operating times are used. Periods of
non-operation are logically considered to be characterized by zero failure rates for short periods.
K - factor to account for effects of environment.
Basic failure rates are considered to be directly applicable to parts designed and produced under reasonably close controls and subjected to normal operating stresses with reasonable safety factors and at ambient conditions of $70^{\circ} \mathrm{F}$ and one atmosphere. With resfect to LSSM, normal operating stresses would be considered to be induced via a traverse over a moderately smooth undulating surface at a velocity of 5 km per hour. Possible significant deviations from this would be reflected in the K factor. Estimated effects of temperature and vacuum conditions are also reflected in this adjustment factor.

It should be noted here that the LSSM hardware will undoubtedly receive more extensive reliability and quality control, test, and checkout efforts than received by the parts represented in the basic failure-rate data. It might be concluded that the basic failure rates could, therefore, logically be reduced to reflect an expected lower rate. However, due to critical weight considerations, the LSSM safety factors are expected to be smaller than those related to the basic datz. This and the fact that the LSSM wili be operating in a more severe environment are believed to reasonably balance the situation.

E - probability of failure oí component to cause failure of "12-sortie" mission.

Since a component failure may not always result in failure of the mission, this factor is necessary to reflect in the ystem reliability figure only those failures which effect system reliability. As an example, failure of a damper might result in subsequent mission failure only five per cent of the time. Therefore, system reliability may be penalized for only five percent of the probability of failure of the damper.
d. Comments on Subsystem Failure Estimates

The following discussion briefly explains the assumptions used in the estimation of reliability of each subsystem and commerts on some of the details.

Chassis - Frame - The assumption is made here that a separation of the chassis structure or failure of a suspension arm mounting bracket would have a high probability of causing the detachment of a suspension and wheel assembly shortly thereafter. Loss of one such assembly would be expected to terminate the traverse, causing mission failure. The pitch limiter is considered to be a non-critical component with a failure resulting in loss of pitch restraint of the trailer. This loss could conceivably result in over-stress of other components.

Suspension - Failure of a structural member of a suspension unit is assumed to have a significant probability of causing catastrophic dislccation of a wheel and drive assembly. Four attachment points offer some redundancy. A torsion bar failure might be prevented from causing excessive displacrment of the wheel by the damper stop; however, the structural member would be subjected to increased dynami= loads without the 'cushion' of the energyabsorbing torsion bar.

Drive Mechanism - Because of the redurdancy associated with six-viheel drives, the wheel-drive subsystem can sustain, without mission failure, the following: (1) one wheel drive seizure, or (2) two wheel drives failing to drive. The redundancy of thie subsystem complicates the procedure; the details of the work are appended as Attachment 8.2.2. The (E) factor, with respect to this subsystem only, takes on a slightly different meaning. It is used as the probability of the failure of the component to cause the indicated mode of failure. Comments worth mentioning here with respect to reliability estimation of this mechanism are:
(a) Failure rates for the flexspline, circular spline, and wheel bearings were doubled, when considering seizure, to account for possible adverse effects of low pressure operation.
(b) It was assumed that gear teeth failures would be equally divided between gear seizure and all interfering teeth stripping from the gears.
(c) Failure of the drive disconnect would take the form of seizure of the mechanism prior to or during attempted actuation.
(d) High speed bearings would probably fail by seizure.

The redundancy of the wheel drive subsystem is a major factor in the overall system reliability. The reliability of a single drive mechanism was estimated as 0.99898 . This value is not significantly better than any of the other subsystem reliabilities. With the six-wheel redundancy the wheel drive subsystem exhibits a negligible unreliability.

Wheels - The assumption here is that mission failure would occur with the failure of one wheel. A wheel failure would be considered as an event more critical than a wheel seizure with essentially total collapse of the wheel structure. A wheel failure could be visualized as resulting in the dragging of the drive mechanism on the lunar surface.

The built-in redundancies of the wheel design make a mathematical model of the wheel reliability highly complex. Therefore, rough approximations were used in arrivi g at a reliability figure.

Comments appropriate here are:
(a) Failure of the tread and mesh covering, although resulting in a reduction in traction, is considered to have no adverse effect on mission success.
(b) Although there are many parts in the spring wire outer frame to fail, the probability of enough adjacent wires failing to produce a significant area of failure is very remote.
(c) The atiff inner frame has a low operation time, especially at slow speed. Total failure of the outer frame would be backed up by this more rigid inner frame. However, if the wheel were to operate on inis inner frame, the probability of failure of the inner frame, rim, and wheel disc would be significantly increased.
(d) The rim and wheel disc are considered to be the only critical parts of the wheel since failure of either would probably cause a wheel loss.

Steering - With respect to steering reliability it is assumed that the mission would be aborted with failure of either steering actuator assembly. Actually, the mission could proceed with certain components inoperative. If one
steering motor fails to operate, the second motor can be used to power both steering units via the interconnecting shaft. In addition, the front unit includes an emergency manual steering mode. A third steering mode is skid steering.

Failure modes considered include loss of steering torque and loss of wheel restrainment. It was assumed that the steering motors would be operating about one-third of the vehicle operating time. Bellows failure, excluding the two redundant bellows, could result in failure due to cold welding of bearing surfaces. Bellows fatiguing would be retarded by the vacuum environment.

Referring to Figure 8.2.2, the steering subsystem reliability of 0.99827 would be increased to 0.99999 if one steering unit failure could be tolerated without causing mission failure. Mobility system reliability would be increased from 0.99218 to 0.99390 .

Because cf the back-up modea of operation, in actual operation on the lunar surface the vehicle would have a high probability of completing a sortie even after sustaining a steering failure. System effectiveness could be enhanced by providing for repair of failures at the lunar base.

Drive Power Distribution - A two controller-inverter power distribution and control configuration was assumed for this subsystem. One controller inverter feeds the starboard wheele and the other, the port wheels. The control of all six wheels with one controller-inverter has not been considered as a backup mode of operation in this evaluation. However, this is possible with incorporation of a simple switching system.

If a spare controller-inverter were included in this subsystem, the subsystem reliability of 0.99704 would be increased to 0.99999 and the system reliability of 0.99218 would increase to 0.99512 .

D2-83012-1
Page 8-21

LSSM FAILURE RATE ESTIMATE: 12-SORTIE MISSION (Part 1)

uccess Definition: Mission may continue with one wheel drive seizure or two heel Crive failures to drive. (This redundancy allowance is less conservative han that reflected in reference (d); results using othez criteria are included in his enclosure).

$$
R_{\text {subsystem }}=P_{r}(e x a c t l y \text { one wheel seizure will occur })
$$

$+P_{r}$ (no more than two failures-to-drive occur).

$$
\text { let: } \begin{aligned}
P_{s} & =P_{r} \text { (seizure) } \\
& P_{F}=P_{r} \text { (failure to drive) } \\
& P_{C}=P_{r}(\text { good })
\end{aligned}
$$

$$
R_{\dot{s}}=\binom{6}{1} P_{s} P_{6}^{5}+\sum_{i=0}^{2}{ }_{1}^{6} P_{F}^{i} P_{G}^{6-i}=6 P_{s} P_{G}^{5}+6 P_{F} P_{G}^{5}+15 P_{F}^{2} P_{G}^{4}
$$

${ }^{2}$ (seizure) :

$P_{s}=P_{r}$ (connected components seize and discornect cannot be operated ir unconnected components seize or both connected and unconnected components ;eize).

$$
\begin{aligned}
P_{s} & =P_{r}(c \text { seizes }) \times P_{r}(d \text { cannot be operated }) \times P_{r}(u \text { does not seize }) \\
& +P_{r}(u \text { seizes })+(0) . \\
P_{s} & =(.000859)(.000080)(.999505)+(.000495) \\
& P_{s} \cong .000495
\end{aligned}
$$

(Note: Values obtained from enclosure (4), pgs. 2 \&: 3, developed using ref (d)).

Subsystem R:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{S}} & =.000495 \\
\mathrm{P}_{\mathrm{F}} & =.000521 \\
\mathrm{P}_{\mathrm{G}} & =.998984 \\
\mathrm{R}_{\mathrm{S}} & =6(.000495)(.998984)^{5}+(.998984)^{6}+6(.000521)(.998984)^{5} \\
& +15(.000521)^{2}(.098984)^{4} \\
\mathrm{~K}_{\mathrm{S}} & =.999988
\end{aligned}
$$

For other"success" criteria:

> Failure Allowance w/o Mission Failure

None - All
Wheeis operate: . 993919
One wheel
Seizes:

Cne wheel fails to Drive:

Two wheels fail to Drive:

Drive
Reliability

Mobility System

- Reliability
.9806155
. 989087
.996374
.997029
. 989241
.907033
. 989245

9.0 CONCLUSIONS

This report has discussed the process leading to the selection of a 6×6 semiflexible frame vehicle as the preferred LSSM baseline concept. Analytical, scale-model and computer techniques for evaluating the mobility performance of vehicles in general, and the baseline LSSM in particular, were described. A preliminary design was performed, in sufficient detail to demonstrate feasibility and to develop a substantial degree of confidence in the ability. to implement the design. the LSSM mobility system consisting of the foliowing subsystems:

- Flexible wire frame wheels
- Individual wheel drive mechanisms with AC induction motors and harmonic drive reduction
- Identical parallel arm suspensions with torsion bar spring element and linear hydraulic damper
- Identical DC motor drive Ackermann-type cross-link actuators for front and rear sets of wheels
o Chassis-Frame consisting of forward and unit box structures, flexible tubular rods connecting the two units, and a telescoping pitch limiter.
- Electric drive inverter-modular control system

Some of the major conclusions reached during the course of this study were:

- Based on considezations of mobility and reliability to increase the probability of mission success and crew safety, the preferred concept for the baseline LSSM is a 6×6 articulated frame vehicle.
- The use of six individually powered wheels and two-axle steering provides important redundancies in case of mechanism failure.

[^0]: D2-83012-1
 Page 5-103

[^1]: D2.83012-1

[^2]: Figure 6.1.2 - Mobility System General Characteristics

[^3]: n2-83012-1
 Page 6-65

[^4]: \& INCLUDES RECHARGE-TIME
 Figure 8. 2, 3-Alphonsus Single LSSM Mission -
 LSSM Sortie Summary

