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PREFACE 

This  Technica l  Report  was prepared by t h e  Northrop Space 

Labora to r i e s  (NSL), H u n t s v i l l e ,  Department, ::or t h e  George C. 

Marshal l  Space F l i g h t  Center  under a u t h o r i z a t i o n  of Task Order N-61, 

Cont rac t  NAS8-11096. 

The NASA Techn ica l  Representa t ive  was M r .  John F. Pavl ick  of t h e  

MSFC A s t r i o n i c s  Laboratc,Ly(R-ASTR-A). 

The work was a twenty man week e f f o r t  ending on A p r i l  19,  1965. 

The d a t a  presented  h e r e i n  include conceptua l  s t u d i e s  of t h e  

command and c o n t r o l  systems f o r  t h e  major e lements  of remote and 

manual c o n t r o l  of t h e  LSV Z.-iir wheel veh ic l e .  Also inc luded  are  

pre l iminary  se rvo-ana lys i s  s t u d i e s  of t h e  s t e e r i n g  complex, and a 

d i s c u s s i o n  of t h e  human performance i n  t h e  c o a t r o l  loop. Two 

approaches t o  t h e  s t e e r i n g  d i scuss ion  a r e  cons idered  - t h a t  of wheel- 

angle  c o n t r o l  and t h a t  of heading con t ro l .  

Suspension performance and e f f e c t s  of t e r r a i n  s l o p e  on t h e  

v e h i c l e  performance were s t u d i e d  and r e p o r t e d  i n  an  in t e r im  r e p o r t  

under Task 0r :er  N-46, Cont rac t  NAS8-11096. The r e p o r t  which w a s  

da ted  January  8, 1965, c a r r i e d  t h e  number VASA 2R-61040. P o r t i o n s  of  

t h a t  r e p o r t  a r e  used a s  a b a s i s  o f  s tudy f o r  t h i s  r e p o r t .  
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SUMMARY 

This  s tudy  is p r imar i ly  l i m i t e d  t o  concepts  of s t e e r i n g  

and t h e  c i r c u i t s  involved. Root locus p l o t s  are presented  f o r  a 

b a s i c  p a r t  of t h e  c o n t r o l  complex where t h e  system can be  

l i n e a r i z e d .  In  o rde r  to o b t a i n  the  c o n s t a n t s  necessary  t o  

determine t h e  t r a n s f e r  func t ions  f o r  t h e  r o o t  locus  s tudy ,  a number 

of s t e e r i n g  motors were reviewed. 

i n  t h e  appendix. 

The resu l t s  of t h i s  review i s  shown 

Since  t h e  c o n t r o l  of t h e  LSV w i l l  depend t o  a l a r g e  

degree on t h e  performance of t h e  ope ra to r ,  r e s e a r c h  concerning 

experiments i n  t h i s  a r e a  are reported.  The a p p l i c a t i o n  of the 

resu l t s  of the  experhnents to the LSV o p e r a t o r  is ct;iscussed. 

Synchronizing of t h e  i n d i v i d u a l l y  c o n t r o l l e d  wheels 

i s  d i scussed ,  and a conceptual  des ign  for synchroniz ing  c i r c u i t s  is 

pres  e n t  ed . 
L i m i t s  of ope ra t ion  of t h e  LSV vary  wCth cond i t i ans  of 

speed and t e r r a i n .  Automatic con t ro l  of t h e s e  l i m i t s  i s  d iscussed .  



1 .o INTRODUCTION 

This  r e p o r t  w i l l  cover p o r t i o n s  of t h e  s t e e r i n g  problems 

of a 4-Wheel Lunar Surface  Vehic le  (LSV) and concepts  f o r  t h e  c o n t r o l  

c i r c u i t  involved. This  v e h i c l e  was descr ibed  i n  d e t a i l  i n  r e p o r t  

number NASA CR - 61040 (Reference 1 )  and a p a r t i a l  l i s t  of 

s p e c i f i c a t i o n s  a r e  a s  fo l lows:  

T o t a l  v e h i c l e  mass 202.36 s l u g s  

Vehic le  t i r e  cons t an t  600 pounds pe r  f o o t  

Ro l l  p l ane  i n e r t i a  5075 s l u g  f e e t  squared 

P i t c h  p lane  i n e r t i a  8116 s l u g  f e e t  squared 

Tread width 11.5 f e e t  (3.51 meters) 

Wheelbase 17.6 f e e t  (5.37 meters) 

Height ,  Center  of Gravi ty  5.83 f e e t  (1.78 me te r s )  

F igu re  1 w i l l  be used a s  t h e  b a s i s  f o r  t h i s  s tudy.  

One of t h e  parameters  t h a t  can be  c a l c u l a t e d  f o r  use i n  t h e  

s tudy  of v e h i c l e  performance on E a r t h  i s  t h e /  

which the  v e h i c l e  t r a v e l s .  I n  Reference 1 and o t h e r  s t u d i e s  concerning 

c o n t r o l  of t h e  LSV,,/ was taken  as t h e  independent v a r i a b l e  so t h a t  

t h e  resul ts  can r e f l e c t  i t s  t r u e  va lue  when t h i s  v a l u e  i s  known. This  

procedure w i l l  be followed i n  t h i s  r e p o r t .  

of t h e  s o i l  over  

S ince  a sk idding  v e h i c l e  cannot p rogres s  i n  a t u r n ,  i t  i s  

necessary  t o  know sk id  l i m i t s .  These l i m i t s  f o r  t h e  LSV were 

2 
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TABLE I 
Minimum Required for Roll Plane Slopes, Vehicle 

Speed and Wheel Angle to Prevent Skidding 
While Xaking an Up-slope Turn 

Terrain Vehicle Wheel Minimum 
Slope Speed,Km Angle 
Degrees Degrees Notes P 

0 

0 

0 

0 

0 

10 

10 

10 

10 

10 

20 

20 

20 

20 

30 

30 

30 

30 

4 

8.36 

8.36 

16.72 

16.72 

16.72 

8.36 

8.36 

16.72 

16.72 

16.72 

8.36 

8.36 

16.72 

16.72 

8.36 

8.36 

16.72 

16.72 

12 

20 

4 

8 

12 

12 

20 

4 

8 

10 

12 

20 

4 

8 

12 

20 

4 

6 

0.2 

0.3 

0.2 

0.5 

1.0 

0.22 

0.33 

0.23 

0.6 

1.0 

0.33 

0.45 

0.25 

0.8 

0.5 

0.65 

0.5 

0.7 

-- Vehicle over-turn at 
13-14' fop= 1.0 

-- Vehicle cverturn at 
12-14O fay= 1.0 

-- Vehicle over-turn at 
8-10° f o p =  1.0 

--Vehicle over-turn at 
6-7' for = 1.0 P 



e s t a b l i s h e d  i n  Reference 1 and a r e  r epea ted  h e r e  f o r  convenience i n  

Table  I. 

sk idding  wi th  t h e  cond i t ions  l i s t e d .  It  should be  noted t h a t  sk idding  

r e p r e s e n t s  a n o n l i n e a r i q  

be t r e a t e d  a s  such. 

The -7 of t h e  t a b l e  i s  the  minimum a l lowable  f o r  no 

'n t h e  se rvo-ana lys i s  of s t e e r i n g  and w i l l  

Besides  sk idding  t h e  of t h e  s o i l  a f f e c t s  t h e  torque  

r equ i r ed  t o  t u r n  t h e  wheel of  t h e  vehic le .  Th i s ,  i n  t u r n  a f f e c t s  t h e  

motor s i z e ,  horsepower, gea r  r a t i o  and motor speed. That i s , t h e  

motor cons t an t s  a r e  unknown and the exac t  b a s i s  f o r  determining them 

a r e  unknown. This  makes t h e  se rvo-ana lys i s  d i f f i c u l t ,  s i n c e  t h e  

choice  of one of t h e s e  f a c t o r s  w i l l  t o  a c e r t a i n  e x t e n t  determine 

o t h e r  f a c t o r s  of t h e  s tudy.  There a r e  two approaches t o  t h e  s o l u t i o n  

of t h e  problem. The f i r s t  (and the  p r e f e r r e d  one)  i s  t h e  p rograming  

of an analog computer so  t h a t  t h e  s t e e r i n g  i s  made t o  conform wi th  

t h e  necessary  performance d e t e r d n e d  from previous  dynamic s t u d i e s .  

The range  of l i n e a r  c o n t r o l  and the  e f f e c t s  of n o n l i n e a r i t i e s  could be 

determined. From t h e s e  r e s u l t s  motor c o n s t a n t s ,  4 gea r  r a t i s s . f o r  

t u r n i n g  r a t e s  could be  determined. 

A second approach t o  the s o l u t i o n  of t h e  problem i s  

p resen ted  i n  t h i s  r e p o r t .  

w i th  t h e  v e h i c l e  s t and ing  s t i l l  as t h e  worst  ca se  of t o rque  r e q u i r e -  

ments. 

t h a t  may be used t o  perform t h e  task of s t e e r i n g  f o r  t h e  worst  ca se ,  

The approach assumes a maximum y of 1.0 

Motor s i z e s  of d i f f e r e n t  types a r e  s t u d i e s  t o  determine those  

5 



and to find the needed system constants for servo-analysis. These 

studies are shown in Appendix A. Many motor-gear combinations can be 

chosen to perform under particular Lunar conditions. Those studied 

are only samples to serve as guides when the time comes to deten.iiiie 

hardware. 

Other items which are studied in this report are the 

effect of human performance in the contrtrl of steering and wheel-angle 

control versus heading control. The human peformance studies are 

limited primarily to a discussion and selction of transfer functions 

which are derived by actual experimentation (Reference 2) .  The 

application of the work done in a similar field and its adaptation to 

this problem is of interest. The functioning of the man at the con- 

trols is one of the major problems of stability for either manual or 

manual-remote control of the LSV. In connection with the human 

performance the wheel-angle control versus heading control is 

discussed in detail. 

A final item of interest covered in this report is that 

of synchronizing the steering motors for the three or four types of 

steering - Ackermann, four-wheel, and crab. The fourth type of 

steering - scuff - requires no steering motors. Problems of steering 

synchronization are discussed with the presentation of a conceptual 

design. 

G 
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. 2 .o STEERING CONCEPTS 

2.1 General 

The two steering control concepts; heading by continuous 

control of wheel angle and by setting a reference heading, each employ 

an electro-mechanical system. Each system may be used manually or 

remote-manually. 

ment viewpoint, but it re:uires continuous reference changing to affect 

a change in heading. This,steering mode can be compared to that of 

driving an automobile. The servo diagram is shown in Figure 2 of 

Section 2.3. 

The former is the simpler of the two from an equip- 

The second concept of steering is accomplished by setting 

a reference heading and having the vehicle accomplish the change 

automatically through a servo system employing the directional gyro as 

a feedback. This system consists of an inner loop control of the wheel 

angle and the outer loop employing the gyro, Tontinuous monitoring 

by the vehicle operator must be done to avoid obstacles through an 

override feature. The system is l e s s  stable than the simple system 

using wheel angle control only. It does, however, require less effort 

on the part of the operator. A servo diagram of this system is shown 

in Figure 9 #of Section 2.4. 

Both systems may be used with digital control (step-type) 

systems or with analog (ramp-type) systems. The difference in manual 

and remote-manual operation can be minimized to that of the time delay 

represented in radio transmission - by proper implementation. The time, 
while negligible on the Lunar surface, is approximately 3.0 seconds 
for the manual-remote operation from Earth. 

7 



2.2 HUMAN RESPONSE 

The human o p e r a t o r  may be desc r ibed  a s  an a d a p t i v e  

op t ima l i z ing  servo  element. That i s  he  w i l l  a d j u s t  h i s  response  t o  

g i v e  t h e  over a l l  system t h e  type  of response  which t h e  o p e r a t o r  

d e s i r e s .  The o p e r a t o r  i s  l i m i t e d  i n  h i s  a b i l i t y  t o  adapt  by h i s  

t r a i n i n g  and phys ica l  and mental  response  time. 

develop a t r a n s f e r  f u n c t i o n  t o  d e s c r i b e  a human o p e r a t o r  it has  been 

I n  a t t empt ing  t o  

found t h a t  t h e  g e n e r a l  equa t ion  which f i t s  w e l l  f o r  t h i s  s i t u a t i o n  

(Reference 2 )  i s  a s  fo l lows  : - TS 
(Kpe 

(T1 n 
The term emTs r e p r e s e n t s  t h e  o p e r a t o r  response time. 

(TJ,s + 1) = G 

s + 1) (T s -E 1 )  

The va lue  of T i s  dependent upon type  of c o n t r o l s  and t h e  system 

response  and v a r i e s  f.~lam .,12 t o  .2 weonds. 

The term Tn comprises t h e  e f f e c t s  of Neuromuscular l a g  and 

i s  p a r t i a l l y  a d j u s t a b l e  f o r  t a sk .  (TLs + 1 )  / (T1s + 1 )  i s  cons idered  

t o  be  t h e  e q u a l i z a t i o n  term which a d j u s t s  t o  a p a r t i c u l a r  f o r c i n g  

f u n c t i o n  and system. 

l i m i t s  f o r  system s t a ’ $ i l i t y .  

v a l u e  of $ wi th  s t r o n g  mot iva t ion  i n c r e a s i n g  i t s  value.  I n  a d d i t i o n  

t h e r e  a re  non l inea r  a s p e c t s  t o  an o p e r a t o r s  performance which are more 

$ i s  t h e  o p e r a t o r  g a i n  which a d j u s t s  w i t h i n  

The o p e r a t o r s  mental  a t t i t u d e  a f f e c t s  t h e  

pronounced when high frequency f o r c i n g  f u n c t i o n s  a r e  used. 

Equations 1 through 5 show t h e  e f f e c t  of t h e  c c n t r o l  

element on t h e  t r a n s f e r  f u n c t i o n  of t h e  o p e r a t o r .  (These equa t ions  were 

de r ived  i n  Reference 2 ) , ,  

8 



CONTROLLED 
ELEMENT 

1 

S I 2  + 1 

Eq. 2 

1 

S 

15 
SI.2 + 1) 

5 
S 
- 

1 
S 

FORCING 
FUNCTION 

Superimposed 
S inus o i d s  

w = .66 r a d l s e c  
w2 = 1.68 r a d l s e c  

W3 = 2.87 r a d i s e c  

w4 = 4.27 r a d l s e c  

1 

Superimposed 
Sinusoids  
W1 = .66 r a d l s e c  
w = 1.68 r a d l s e c  

w3 = 2.87 r a d l s e c  
w 4 =  4.27 r a d / s e c  

2 

Random Noise 
Corner Frequency 
1 rad / sec  

Random Noise 
Corner Frequency 
1 r a d l s e c  

Yandom Noise 
Corner Frequency 
1 r a d l s e c  

HUMAN OPERATOR 
DESCRIBING FUNCTION 

~~ ~ ~~ ~ 

(s1.15 + 1) (SI25 + 1 )  

3e-. 15s 
( s / . 3 5  + 1 )  

(s1.2 + 1 )  

(s/ .  1 + 1) 
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When time de lays  a r e  introduced i n t o  a system a s  i n  t h e  t ransmiss ion  

time delay i n  Ear th  Moon communication, t h e  o p e r a t o r  w i l l  a t tempt  t o  

adapt and cortipensate t o  main ta in  system s t a b i l i t y  t o  t h e  l i m i t s  of h i s  

ab il  i t  y o  

Nhcn lags a r e  f i r s t  i n s e r t e d  i n t o  t h e  loop t h e  o p e r a t o r  tends  t o  

overshoot u n t i l  he a c q u i r e s  some experience wi th  t h e  new system 

response.  An over  a l l  r e d u c t i o n  i n  system g a i n  is  i n s e r t e d  by t h e  

o p e r a t o r ,  A s  t h e  l a g  n e a r s  2 seconds t h e  system appears  t o  t h e  o p e r a t o r  

t o  have the response of a pure in tegra tor (K/S) .  

f u n c t i o n  fo r  t h i s  t y p e  of system i s  shown i n  e q u a t i o m 2 ,  4 and 5. 

The o p e r a t o r  t r a n s f e r  

The e f f e c t  of changes i n  system g a i n  on o p e r a t o r  response  can be 

seen i n  equatiors 4 and 5. A s  t h e  c o n t r o l  element g a i n  goes from 1 t o  5 

t h e  opera tor  g a i n  a d j u s t s  from 3 t o  1 which t e n d s  t o  m a i n t a i n  a 

cons tan t  cver  a l l  loop gain.  

Equation one has  been s e l e c t e d  f o r  use  i n  t h i s  s t u d y  f o r  d e s c r i b i n g  

t h e  opera tor  response dur ing  l o c a l  c o n t r o l  of  t h e  v e h i c l e .  Equat ion 2 

has been chosen t o  s e l e c t e d  f o r  d e s c r i b i n g  t h e  o p e r a t o r  response  f o r  

remote con t ro l  of t h e  v e h i c l e  from Ear th .  

10 



2 .3  STEERING BY CONTINUOUS WHEEL ANGLE CONTROL 

Directional 
Control * 

- -- 
1 i Va -R TL 5 I , 

- ', out 

I i i 

r 
I '  

K s S ( J R / %  KS)S-tl) I - 1  . in,. 
I 

Pr e -Amp. Motor 
- . ___. - - - - - Ke 

Figure 2 Servo Diagram for Continuous Wheel Angle Control. 

The servo diagram of Figure 2 shows the feedback circuit 

for a shunt motor with a separately excited field, the transfer function 

for the motor-gear complex and the preamplifier. The ' 7 '  in is the 

position reference for the wheel angle and the out is the actual 

wheel angle position. Other sy1r~b01.s are noted as follows: 

K 

Va 

R 

T1 

Kt 

KS 

J 

J R  - 
KtKs 

KO 

amp1 i f  ier gain 

applied motor armature voltage, dc 

motor armature resistance, ohms 

steady-state load torque, ounce-inches 

motor torque constant, ounce-inches/ampere 

motor speed torque, volt-second/radian 

system inertia, ounce-inches squared 

system time constant, seconds 

voltage feedback per radian turn of motor 

Polarities are reversed when the vehicle travel is 

reversed . 
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Using the system of Figure 2 the root locus plot was 

derived as shown in Figure 3, for the 1/30 Hp control type motor. The 

values of the constants were derived from the quantities in Appendix A. 
1 1 Root locus plots for the i6 Hp and - 10 Hp motors are quite similar. 

The root locus indicates that the system described will be 

stable (and oscillatory) but totally unsuited for the application. 

Primarily the fault lies with the values of Ks and Kt. 

could be made to add lead compensation to the circuits, it is felt that 

other systems could be used more advantageously. Accordingly, the 1/8 

horsepower systems of Appendix A were calculated. The root locus for 

these systems are shown in Figures 4A, 4 B  and 4C. 

While attempts 

Since the reference input voltage must be related to the K, 

Ke 

ratios of these constants are determined as a single value and recorded 

on the root locus plots. The reader can determine the voltage constant 

representing a specific value of 

across a 28 volt line and use this information ta determine the value 

of Q needed. In each case where a new reference is made digitally 

the system will respond as though a step were inserted, and it is from 

this viewpoint that the systems will be analyzed. 

and Ks of the system in a fashion determined by the hardware, the 

in desired for motor starting 

The root locus for SYSTEM A (derived in Appendix A) shows 

that this system for a wheel angle change 

the change within the allotted time for a 

of 3' per second will perform 

combination of K KQ equal to 

Ks 
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approximately 0.15, The system is oscillatory, however, and if' is 

approximately 0.2. Undoubtedly the system can be compensated (There' 

are many combinations of compensation that will work) to achieve the 

desired performance. A better way for initial design, would be to 

SR lower the motor time constant by changing some elements of - 0 

K,K+ 
This was done for this system as shown in Figure 4B, and witi motor 

time constant of 0.16 second the specifications of having the wheel 

angle change 3O in one second are met with a gain combination 

(combination of the Kts) of 0.113. The system now has aJ of 

approximately 0.7 which should be acceptable. 

So far, in the analysis the time lag of the power supply has 

not been taken into consideration. If this is a factor to be conaidered, 

it can be analyzed by using K 

Root locus sketches showing power supply time lags of 0.1 and 0.25 

instead of K for the preamplif.ier. 
T,s + 1 

second are shown in Figure 4C. It should be noted that lead compensation 

will be needed to balance any appreciable time lag in the power supply 

if the original specifications are to be met. 

SYSTEMS B and C were derived in Appendix A for changes of 

wheel angle of 6 O  and 9 O  per second, respectively. The root locus plots 

of Figures5 & 6 indicate that the specifications can be met also with 

K combinations of 0.113 and motor time constants of 0.16 second. 

In making the above analysis it has been assumed that 

reference inputs for the systems have been limited to 3 O ,  6 O  and 9 O  

respectively. After the K combinations have been set by the hardware, 

21 



a d d i t i o n a l  wheel angle  changes ( f o r  i n s t a n c e ,  changing a 6 O  on t h e  3’ 

system) w i l l  cause t h e  system t o  reach  t h e  non l inea r  r eg ion  of 

opera t ion .  S ince  t h e r e  i s  more than  one n o n l i n e a r i t y  p re sen t  i n  t h e  

c i r c u i t ,  proper  a n a l y s i s  w i l l  r e q u i r e  an analog computor. 

I t  should be remembered a l s o  t h a t  i n  making t h e  above a n a l y s i s  

t h e  /Y of t h e  s o i l  was taken  a s  1.0, a s  t h e  worst  case.  

t h e  s o i l  should not  a f f e c t  t h e  r e s u l t s  of SYSTEMS A ,  B ,  o r  C ,  however, 

s i n c e  the  motors used f o r  t h e  systems were s e p a r a t e l y  e x c i t e d  shunt  

motors with n e a r l y  cons t an t  speeds.  The v a r i a t i o n s  i n  w i l l  change 

t h e  power ou tpu t  r equ i r ed  from t h e  motor bu t  should not  change t h e  

b a s i c  servo ana lys i s .  

( p o s i t i o n  l i m i t i n g )  of t h e  heading on l e v e l  ground o r  on s l o p e s  bu t  not  

t h e  wheel angle  con t ro l .  

The -y of 

Condit ions of ;y w i l l  change t h e  e f f e c t  

F igu res  7A and 7B show t h e  t r a n s f e r  f u n c t i o n  block diagrams 

wi th  t h e  ope ra to r  i n  t h e  loop. The reasons  f o r  t h e  choice  of t r a n s f e r  

func t ions  were g iven  i n  Sec t ion  2.2. For t h e  case of Lunar ope re t ion ,  

t h e  ope ra to r  observes  cont inuous ly  vary ing  ana log  f u n c t i o n s  as t h e  

v e h i c l e  is  s t e e r e d .  This  i s  very  s i m i l a r  t o  t h e  cond i t ions  of t h e  

experiment t h a t  der ived  t h e  o p e r a t o r  t r a n s f e r  f u n c t i o n  used h e r e  f o r  

t h e  Lunar opera t ion .  It was s t a t e d  i n  S e c t i o n  2.2 t h a t  f o r  a t ime 

de lay  of over 2 seconds t h e  c o n t r o l  f u n c t i o n s  of equipment appear t o  

t h e  ope ra to r  a s  an i n t e g r a l .  The t i m e  de l ay  f o r  t h e  Earth-to-Lunar 

ope ra t ion  is  i n  excess  of t h i s ,  and t h e  t r a n s f e r  shown appears  t o  f i t  

f o r  t h i s  case.  

t ransmiss ion  was taken  a s  3.0 seconds. It i s  inc luded  i n  t h e  ‘ loperator”  

t r a n s f e r  func t ion .  Here, aga in ,  t h e  system i s  cons idered  t o  be i n  t h e  

l i n e a r  range cf opera t ion .  

The t ime de lay  f o r  t r ansmiss ion  and equipment f o r  

22 



CONTINUOUS WHEEL ANGLE CONTROL DIAGRAM 
WITH VEHICLE OPERATOR IN THE LOOP 

FIGURE 7A LUNAR OPERATION 

r -* 

FIGURE 7B EARTH-TO-LUNAR OPERATION 
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2.4 S t e e r i n g  by Heading Control  

The concept of s t e e r i n g  by heading c o n t r o l  i s  d e s c r i b e d  a s  

The system o p e r a t e s  i n  a f a s h i o n  s i m i l a r  i n  many d e t a i l s  t o  fol lows.  

t h a t  of an automatic  p i l o t .  The o p e r a t o r  s e t s  t h e  d e s i r e d  d i r e c t i o n  of 

t r a v e l  as  an input  r e f e r e n c e ,  and t h e  c o n t r o l  equipment on t h e  v e h i c l e ,  

through the gyro feed back, a u t o m a t i c a l l y  b r i n g s  t h e  v e h i c l e  t o  t h e  new 

heading. This  type  of c o n t r o l  h a s  t h e  d i s t i n c t  advantage of r e q u i r i n g  

less of t he  o p e r a t o r t s  t i m e ,  and a t  t h e  same t i m e ,  reduces  t h e  e f f e c t s  

of t h e  t ransmiss ion  t ime d e l a y  f o r  t h e  Earth-to-Lunar mode of opera t ion .  

There must b e  an o v e r r i d e  f e a t u r e  wi th  t h e  quipment f o r  e i t h e r  t h e  

Lunar o r  t h e  Earth-to-Lunar opera t ion .  T h i s  i s  used t o  avoid o b s t a c l e s  

i n  t h e  path of t h e  set  heading of t h e  LSV. 

F igures  8A & 8B show a s i m p l i f i e d  servo  diagram of t h e  heading 

c o n t r o l .  The s t a b i l i t y  f o r  t h i s  type  of system i s  somewhat c r i t i ca l .  

The s t a b i l i t y  depends l a r g e l y  on power supply t i m e  l a g s ,  t h e  gyro feed-  

back and p a r t i c u l a r l y  on the . sys tem ga ins .  Turning r a t e s  could f a l l  i n  

t h e  l a t t e r  category a s  w e l l  a s  t h e  o t h e r  system c o n s t a n t s  (Kls) 

descr ibed  i n  Sec t ion  2.3. Note t h a t  t h e  t r a n s m i s s i o n  t i m e  d e l a y s  are 

included with t h e  t r a n s f e r  f u n c t i o n  of t h e  o p e r a t o r  f o r  t h e  Ear th- to-  

Lunar mode shown i n  F i g u r e  8B. Power supply  t i m e  d e l a y s  are n o t  shown. 

F igures  9A and 9B show a block diagram of the two s t e e r i n g  

modes discussed wi th  t h e  n o n l i n e a r i t i e s  involved. The d e s c r i p t i o n s  of 

t h e  systems a r e  t h e  same otherwise.  

l i m i t s  of t h e  v e h i c l e l s  performance and must b e  inc luded  i n  any complete 

These n o n l i n e a r i t i e s  a r e  p h y s i c a l  
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HEADING CONTROL SERVO DIAGRAMS 

FIGURE 8A LUNAR OPERATION (LINEARIZED) 

FIGURE 8 B  EARTH-TO-LUNAR OPERATION (LINEARIZED) 
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analysis of the control system. 

top speed of the steering motor-gear combination; the position limit is 

determined by the total allowable (physical stop) wheel angle; and the 

skid limit occurs when the of the soil does not support the vehicle's 

turning at the rate indicated by the wheel angle and vehicle's speed. 

This is the most troublesome of the limits on the steering. It is shown 

as a sat function to represent a full skid. Actually it has a variable 

The rate limit is deterimined by the 

amplitude and can be represented as a soft limit for a partial skid and 

represented as a hard limit for a full skid. Since the loss of steering 

when the LSV traverses a Lunar obstacle reacts in the same way as full 

or partial skidding, these functions also can be used to determine 

effects on steering when the LSV is partially (or fully) off of the Moon. 

Concepts only are shown for this portion of the study. While 

some systems may be linearized and studied by servo analysis, more than 

one nonlinearity usually requires a computer for solutions. 
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3.0 STEERING SYNCHRONIZING CONCEPTS 

Normally, little thought is given to the synchronizing of.the 

wheels for steering of an earth-bound vehicle. This is done with a tie 

rod, and the steering is actuated from a common mechanical source. 

Concepts of the steering of the LSV, however, have indicated that each 

wheel will be actuated by individual electric motors - or that the 
design will not include a mechanical connection between the wheels to 

be steered. Therefore, a synchronizing device will be required for 

each pair of wheels used for steering. Figure 10 B shows a concept of 

such a synchronizing device. For this concept there is no master-slave 

relation between the prime movers of the wheels being steered. Instead, 

the prime mover with the largest output serves as master momentarily 

until the units are synchronized. A s  shown in Figure 10B, a small 

deadband should be inserted in the circuit for positive stability. 

While this circuit was conceived for use with electric motors, it should 

operate equally well in a hydraulic or pneumatic system if it is 

properly implemented. 

The servo concepts for steering the LSV were studied in 

Sections 2 .3  and 2.4 as though only one wheel of the vehicle is to be ' 

steered. This is adequate to determine the performance of the vehicle 

since the input constants can be doubled and the output constants 

halved for the pair of steered wheels, so that the previous work will' 

apply. Figure 11 indicates a concept where three types of steering - 
Ackermann, 4-wheel and crab - can be used, and have these servo-analyses 
apply 
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SYNCHRONIZING CIRCUITS 

FIGURE 10A CONTROL OF ONE WHEEL 

FIGURE IOB CONTROL OF TWO WHEELS (SYNCHRONIZED) 
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The concept is a collection of the circuits previously described, with 

the exception of the selection of the types of steering. 

of the steering mode control switch applies to 4-wheel steering; 

position 2 applies to Ackermann steering; and position 3 applies to 

crab steering. It should be noted that Ackermann and 4-wheel steering 

operate as closed-loop systems with the heading control, while crab 

steering operates open loop. 

Position 1 
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4.0 AUTOMATIC CHANGE OF VEHICLE OPERATING LIMITS 

Some of the control limits, such as skidding, etc., were 

discussed in Section 2.4. These limits and those of vehicle overturn 

primarily limit the speed of the vehicle on the Lunar mrface. Vehicle 

overturn in turn depends (besides speed) on the size of obstacles 

transversed, the terrain slope, the y of the soil and a combination of 
these to varied degrees. At first glance it appears desirable to 

devise automatic circuits in the ccntrol systems that would compensr;te 

for the conditions of terrain over which the LSV travels. Such changes 

in limits would compensate speed and wheel angle of the vehicle so that 

it would be operating within safe conditions. That is, a safe speed 

set for level ground would be reduced automatically when the vehicle 

found itself on a slope. Besides the difficulty in implementing such 

a program; however, it appears impractical. For instance, the results 

of striking an obstacle with one side of the vehicle have been shown in 

Reference 1 to produce similar results (measured in seconds of time) as 

having the vehicle operate on a slope. For another example, pitch 

plane sensors would record verticle excursions of the LSV (after 

striking an object) in the same manner as when the vehicle goes up or 

down a slope. 

angle would necessarily take into account the of the soil. The .Y 

could vary in the space of as little as 10 meters with no accurate way 

of measuring the change. With constant changes in terrain conditions, 

the task of implementing aatomatic changes in limits should prove to 

In addition, any sensor operating to limit speed or wheel 

1 
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be cumbersome. Instead, it appears to be more reasonable initially 

to set administrative limits of speed and maximum wheel angle below 

the safe operating limits of the vehicle. 

roll angle information, as well as wheel angle and vehicular speed,should 

be furnished to any remote operator of the LSV so that the approach to 

unsafe conditions can be recognized. The set vehicular speeds must be 

set slow enough to stop the vehicle when an unsafe condition approaches. 

Speeds of 4Km per hour and wheel angles of 60 (maximum) appear to be 

acceptable for soil 

3 O V  for traversing obstacles of up to 0.35 meters high. 

the vehicle speed may be necessary, however, when the Earth-to-Lunar 

time delay is considered with the control system. 

latter case that the control system is employed to by-pass an obstacle. 

In addition pitch,yaw and 

of 0.4 to 9.5 (Reference 1) and slopes of 0 to 

A reduction in 

It is assumed in this 
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5 .O CONCLUSIONS AND RE COMMENDATIONS 

This  s tudy  has  e s t a b l i s h e d  a range  of motor sizes t h a t  can 

be  used t o  accomplish s t e e r i n g  r a t e s  i n  a range  of 3' t o  9' p e r  second 

f o r  t h e  wheel angle.  

p r a c t i c a l  s t e e r i n g  r a t e s  l i e  w i t h i n  t h i s  range. Root locus  p l o t s  have 

been presented  whiah can be  i n t e r p r e t e d  t o  i n d i c a t e  dynamic responses  

of t h e  p a r t i c u l a r  s y s t e r s  f o r  t h e  o p e r a t i n g  cond i t ions  (bes ides  t h e  

maximum) f o r  motor speeds,  o r  i npu t s ,  lower than  t h a t  of t h e  des ign  

maximum. 

Previous work (Reference 1 )  has shown t h a t  

The problem of synchronizing t h e  wheel ang le s  of t h e  

s e p a r a t e l y  opera ted  wheels used f o r  s t e e r i n g  e x i s t s .  Accordingly,  a 

concept f o r  t h i s  ope ra t ion  has  been presented .  

I n  each of t h e  above a r e a s  s t u d i e d  t h e  f i n a l  des ign  depends 

on unknown f a c t o r s  such a s  t h e  -c;/ of t h e  s o i l  and t h e  a d m i n i s t r a t i v e  

d e c i s i o n  coxcerning o p e r a t i n g  speeds of t h e  LSV. Conclusions from 

t h i s  s tudy,  t h e r e f o r e ,  a r e  l imi t ed .  It i s  concluded, however, t h a t  

c o n t r o l  systems employing wheel angle  c o n t r o l  ( a s  opposed t o  heading 

c o n t r o l )  can be made t o  be s t a b l e  wi th  l i t t l e  t roub le .  

employing heading c o n t r o l  a r e  more s e n s i t i v e  and r e q u i r e  computer s t u d i e s  

be fo re  a f i n a l  d e c i s i o n  i s  reached.  I t  i s  recommended t h a t  t h e s e  

computer s t u d i e s  b e  made us ing  t h e  concept diagrams of t h i s  r e p o r t .  

Cont ro ls  systems 
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SECTION 6.0 

SYMBOLS 

J 

K 

KS 

KT 

Ka 
R 

T1 

Va 

Y 

System Indrtia, ounce-inches squared 

Amplifier Gain 

Motor Speed Constant, volt-secondlradian 

Motor Torque Constant, ounce-inches per amp 

Voltage Feedback Constant, voltslradian 

Motor Armature Resistance, ohms 

Steadystate Torque Load, ounce-inches 

Applied Motor armature voltage, dc volts 

Damping Rat ic 

Coefficient of Friction 

Time Constant, seconds 

Vehicle heading 
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STEERING MOTOR SIZE - CALCULATIONS 

General 

I n  order  t o  c a l c u l a t e  t h e  motor cons t an t s  needed f o r  u se  i n  t h e  

t r a n s f e r  f u n c t i o n  f o r  s e rvo -ana lys i s ,  reasonable  motor s i z e s  were 

f i r s t  c a l c u l a t e d  from a torque-horsepower r e l a t i o n .  This  r e l a t i o n  was 

considered from a s t e a d y - s t a t e  view p o i n t  u s ing  t h e  f o o t p r i n t  of t h e  

Lunar Surface  Vehic le  (LSV) and t h e  maximum power and torque  expected 

when the  v e h i c l e  i s  s t and ing  s t i l l .  

Whi l e - the re  i s  small  l i l d i h o o d  t h a t  t h i s  combination w i l l  be  

encountered, i t  must  be considered a s  t h e  worst  case.  

The a c t u a l  f o o t p r i n t  of t h e  LSV w i l l  be  e l l i p t i c a l .  However, f o r  ea se  

of c a l c u l a t i o n s  a r e c t a n g u l a r  shape w a s  used wi th  a c a l c u l a t e d  r a d i u s  

of gy ra t ion ,  The d i f f e r e n c e  i n  f o o t p r i n t  shapes i s  Considered i n  t h e  

s a f e t y  f a c t o r  of t h e  c a l c u l a t i o n s .  Torque and horsepower a r e  considered 

i n  t h e  c a l c u l a t i o n s  t o  vary  with 9 . Figure  A 1  i n d i c a t e s  t h e  

p e r t i n e n t  LSV d a t a  used i n  c a l c u l a t i n g  mator s i z e s .  

A l l  motors s tud ied  were considered t o  have f i x e d  o r  s e p a r a t e l y  e x c i t e d  

( s h u n t )  f i e l d s .  

armature c u r r e n t ,  to rque  and speed cons t an t s .  Typica l  small  c o n t r o l -  

t ype  motors were f i r s t  s t u d i e d ,  and it appears  t h a t  t h e  requirements  

f o r  s t e a d y - s t a t e  v e l o c i t y  w i l l  be s a t i s f i e d  by t h i s  t ype  of motor. 

However, t h e  s tudy  ( i n  t h e  t e x t )  shows t h a t  a l a r g e r  - o r  high torque-  

motor i s  r equ i r ed  f o r  a c c e l e r a t i n g  t h e  sy  stem a t  an accep tab le  r a t e .  

A s u r f a c e  4 of 1.0 was used. 

The f i e l d  s t r e n g t h  i s  no t  s p e c i f i e d  except  i n  t h e  



. 

A s  a r e s u l t  of t h e s e  f i n d i n g s ,  l a r g e r  motors were s tud ied  a s  wel l .  

I n  a l l  cases  f o r  t h e  motor s t u d i e s  t h e  amount of i n e r t i a  of t h e  

v e h i c l e  wheel i s  neg lec t ed  s i n c e  it i s  very small  when r e f e r r e d  t o  

t h e  armature of t h e  motor. The i n e r t i a  used f o r  t h e  c a l c u l a t i o n s  

inc ludes  t h a t  of t h e  motor, gea r s  and any governor t h a t  may be requi red .  

The f i n a l  choice of a motor f o r  s t e e r i n g  w i l l  be determined by t h e  

speed of  s t e e r i n g ,  t h e  a l lowable  hea t ing  of t h e  motor, t h e  torque  

r e q u i r e d  and a p rov i s ion  f o r  s t a l l  cu r ren t .  The small  motors shown 

i n  t h i s  s tudy  provide f o r  s t a l l  cur ren t .  The l a r g e r  motors ,  however, 

a r e  f o r  i n t e r m i t t e n t  du ty  b u t  can be s t a r t e d  ac ross  t h e  l i n e .  They 

r e q u i r e  g r e a t e r  cool ing.  A compromise must be  reached i n  t h e  f i n a l  

choice  of motor. 
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. 
PERTINENT S P E C I F I C A T I O N S  OF THE 4 WHEEL LSV 

USED I N  THE STEERING MOTOR CALCULATIONS 

VEHICLE BODY MASS: 

VEHICLE WHEEL MASS: 

VEHICLE WHEEL DIAMETER: 

VEHICLE T I R E  WIDTH : 

VEHICLE T I R E  CONSTANT: 

FOOTPRINT S I Z E  : 

185 Slugs 

4.34 Slugs 

80 inches (2.03 meters) 

12 inches (0.305 meter) 

50 pounds per inch deflection 

approximate 3.73 ft. 2 

Foot - Print 

Wheel deflexion 
5 . 4" FIGURE A 1 
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I, STEERING MOTOR SIZE DATA - 
TYPICAL CONTROL TYPE 

TABLE A I A  

APPROXIMATE TORQUE REQUIRED TO 
CHANGE LSV WHEEL ANGLE WITH LSV 

VELOCITY AT ZERO AND WITH VARIOUS 
VALUES OF N 

TORQUE REQUIRED TORQUE REQUIRED 
OZ - INCHBS PLUS 2 5 %  SAFETY 

FACTOR 
OZ - INCHES 

I. 3 120 3900 

0.5 1560 1950 

0.2 624 780 

TABLE A I B  

~ ~~ 

MOTOR HORSEPObER REQUIRED FOR VARIOUS AND STEADY-STATE 
WHEEL-TURN RATES - VEHICLE VELOCITY, 0 

Wheel-Turn 
R a t e  

D e g r e e s / s e c o n d  Y =  1 7 s  0.5 7. .2  

3 
6 

H o r s e p o w e r  H o r s e p o w e r  H o r s e p o w e r  
.031 .016 . 006 
.062 .032 .013 

9 .093 .047 0019 
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