$\mathrm{N} / \mathrm{S} \wedge$
National Aeronautics and
Lyndon B. Johnson Space Center Lyndon B. Joh
Houston, Texas

Approaches
Several reference approaches to the Human Exploration Initiative are being explored. Story on Page 3.


Door jam
Bldg. 10's large overhead door partially on Page 4.

# Space News Roundup <br> Vol. 29 

## Contributes nearly $\$ 1$ billion in ' 89

## JSC boosts local economy

By Linda Copley
JSC contributed about $\$ 973$ million to the Houston area economy in fiscal year 1989, an increase of $\$ 400$ million over the previous year.
The center's expenditures locally included $\$ 157$ million in federal salaries, $\$ 3$ million in air travel, and $\$ 812$ million in goods and services from more than 1,100 local businesses, averaging $\$ 3.7$ million for each working day.

JSC received $\$ 1.9$ billion, or about 17 percent of the $\$ 11$ billion appropriated for NASA in fiscal '89. The major portion of JSC's budget, $\$ 1.6$ billion, went for Research and Development (R\&D) and Space Flight Control and Data Communications. Research and Program Management (R\&PM), covering everything from salais and electric bills, and mowing the grass, took $\$ 301$

## million. Facility construction accounted for the remaining

 \$14 million.Utility costs for the center for fiscal ' 89 were $\$ 1.6$ million for gas, $\$ 7.4$ million for electricity, $\$ 6.8$ million for (phone and electronic) communications, and $\$ 300,000$ for the purchase of surface water and sewage treatment.
Since moving to Houston in 1962, total JSC funding from NASA equals $\$ 37.3$ billion in actual dollars through Sept. 30, 1989. That total includes $\$ 3.9$ billion for R\&PM $\$ 33$ billion for R\&D, and $\$ 351$ million for construction of facilities overall in the past 28 years. JSC has paid out $\$ 2.6$ billion in civil service salaries since 1962.
JSC spent $\$ 1.1$ billion in fiscal ' 89 with both Texas firms and out-of-state companies that pay salaries to employees in their Texas operations. That places Texas Please see JSC, Page

Millions Fed Into Local Economy



The Long Duration Exposure Facility (LDEF) is viewed by scientists and technicians in Kennedy Space Center's Orbiter Processing Facility. LDEF has since been moved to the Spacecraft Assembly and Encapsulation Facility (SAEF-2), where its individual experiments will be removed for more detailed study.

## No early surprises on LDEF

Framework ready to fly again, scientists say

The Long Duration Exposure Facility (LDEF) took thousands of hits from natural and man-made particles, but project scientists said Tuesday it could fly again with new, improved experiments.

Chief Scientist William Kinard of Langley Research Center said preliminary investigation shows LDEF's aluminum structure to be in excellent condition and ready for reflight, although NASA currently has no reflight plans. LDEF and its 57 experiments were designed to record encounters with atomic oxygen, radiation, micrometeoroids, man-made debris and other space hazards.
There was some unusual discol oration-a change of white and yellow paints to brown-on at least one experiment, said Dr. Ann

Whitaker of Marshall Space Flight Center, co-principal investigator for solar array and structural materials, but overall the satellite looks as expected.
LDEF has been removed from Columbia's payload bay, moved to the Spacecraft Assembly and Encapsulation Facility (SAEF-2) and placed on a "spit" in a rotational mode so that co-principal investigators can view it and begin removing their experiments next week. Investigators have been inspecting the satellite from 1 to 5 inspecting
"I think the materials people and the science people here have learned a great deal and they would dearly love to get a chance to make improvements, to put new generations of materials up and
ee how they work," Kinard said. "We are approaching the point of making some final decisions on space station materials and I think it would be very effective to be able to put these materials up on a spacecraft like LDEF and get a little urvival data prior to committing (materials) to the space station. JSC's Don Kessler, representing the Micrometeoroids and Debris Special Investigation Group, said quick-look observations have revealed no surprises in terms of natural and man-rnade space debris.
"The orbital debris environment is not any more severe than we anticipated, but we need a lot more analysis to be sure of that," Kessler analy.
said.

Please see LDEF, Page

## Atlantis, crew ready to light up night sky

By Kyle Herring managers cleared the STS-36 vehicle for its Department sion.
Shuttle program managers conducted bottoms-up review bottoms-up review at the routine flight day morning for fin readiness review and concluded no launch major problems stand in the way of All work at the launch site was the launch. Liftoff could occur during proceeding smoothly as engineers a four-hour launch period beginning conducted final close-out work befor at 11 p.m. Wednesday. The 34th starting the countdown for Atlantis shuttle mission will be only the fourth sixth mission into space.

The crew for the STS- 36 missionCommander J.O. Creighton, Pilo John Casper and Mission Specialists Mike Mullane, Dave Hilmers and —
 Pierre Thuot-is scheduled to arrive at KSC aboard NASA T38 trainers Sunday night or Mon

Galileo's journey


## JSC establishes lunar and Mars program office

By Kari Fluegel
A new Lunar and Mars Exploration Program Office here at JSC will soon begin the technical definition and integration responsibilities for the agency's exploration initiative. In response to the growing interest in and emphasis on continued space exploration, NASA Headegated program level responsibilities to JSC. In turn, JSC Director Aaron Cohen has established the Lunar and the Lunar and Program Office to be headed by

'Johnson, with its history and experience, has a very real responsibility to help shape the initiative.'
-Mark Craig
office is Douglas R. Cooke, currently deputy manager of the exploration office in the New Initiatives Office. The program office, mail code XA will be comprised of three offices: the System Engineering and Integration Office headed by Norm Chaffee currently deputy division chief in the Propulsion and Power Division; the Mission Development and Operations Office headed by previously manpreviously man ager of the Mission Develop ment Office, New Initiatives Office; and Program Mark Craig, manager of the explo- and Support Office, co-assigned to ration office formerly housed within the New Initiatives Office. the Administration Directorate "The program office is responsible for defining how an outpost on the Moon and manned missions to Mars will be undertaken, both technically and programmatically. In so doing, it is responsible for working with and integrating study results from all of the NASA centers," Craig said
The office will be composed of an existing 22 JSC civil service positions plus about 50 contractors and civil servants from other NASA centers and NASA Headquarters

## Deputy manager of the program

headed by Humboldt Mandell, now manager of the Space Station Projec Control Office.
The Mission Development and Operation Office will define the top level concepts, or architecture, of the exploration initiative-what goes where, when and how-while the system engineering group will transform this architecture into vehicles and systems to be studied by NASA teams around the country, Craig said. Program Development and Control will define the schedules and costs

## Galileo whips by Venus

Galleo was busy snapping photo- caused the camera to misire and has about Venus this week after making a gravity-assist flyby and being whipped back toward Earth.
The nearly perfect Feb. 9 flyby was not without incident, however, as a software incompatibility caused Galileo's on-board computer to click off a number of unplanned exposures.
Galileo, launched from the Space Shuttle Atlantis in October, gained 4,990 miles an hour as it shot around Venus. As of today it is 34.3 million miles from Farth and 452 million miles miles from Earth and 452 million miles from its uttimate destination, Jupiter, traveling at 89,558 miles an hour. The spacecraft remains in excellent health.
The flight team at NASA's Jet Prodown the computer problem that happening again.

The photos and infrared and ultraviolet spectral observations taken during and after the flyby will allow scientists to search for deep cloud patterns and lightning storms in the torrid Venusian atmosphere. Data will not be transmitted back to Earth until December, when the spacecraft makes the first of two Earth flybys that will give it the remaining velocity boosts needed to reach Jupiter by 1995.
Meanwhile, the Magellan spacecraft hat has Venus as its destination is 1124 million miles from Farth and 803 million miles from Vom Earth and 80.3 60,317 miles an venus, cruising a launched from Atlantis in spacecraft, schedule for arival at Venus Aug 10.

## Ticket Window

The following discount tickets are available for purchase in the Bldg. 11 Exchange Gift Store from 10 a.m. to 2 p.m. weekdays.

75 each
AMC Theater (valid until May 1990): $\$ 3.50$ each
Sea World (San Antonio, year long): adults, $\$ 17.25$; children $\$ 14.75$
Barefoot in the Park (8:15 p.m., Feb. 16; League City Civic Center): adults, $\$ 6$ Sents, \$4
Sesame Street Live (10:30 a.m., Feb. 24, Summit): $\$ 7$ each.
Rodeo tickets (Rodney Crowell \& Restless Heart-11 a.m., Feb. 24, mezzanine, $\$ 9$; Patti LaBelle and James Ingram-7:45 p.m., Feb. 28, mezzanine, $\$ 8$; An
Murray-11 a.m., March 3, mezzanine, $\$ 9$; Alabama-4 p.m., upper level, $\$ 7.50$ ).

## ISC

## Gilruth Center News

EAA badges-Dependents and spouses may apply for a photo I.D. 6:30-9:30 p.m. Monday-Friday

## Defensive driving-Course is offered from 8 a.m.-5 p.m., March 17 and April

 1; cost is $\$ 15$.Weight Safety-Required course for those wishing to use the Rec Center weight room. The next class will be from $8-9: 30 \mathrm{Feb} .22$.
Ballroom dance-Professional instruction in beginning, intermediate, and advanced ballroom dancing. Classes begin March 1, and meet every Thursday for eight weeks. Beginning and advanced classes meet 7-8:15 p.m., intermediate class meets 8:15-9:30 p.m. Cost is $\$ 60$ per couple.
Taekwondo/hapkido-Classes in the Korean art of self-defense, and mental and physical discipline are held Tuesday and Wednesday nights; cost is $\$ 40$ monthly. Low-impact aerobics and exercise-Each eight-week session runs twice a week from 5:15-6:15 p.m. Cost is $\$ 24$.
Softball sign-ups-Summer softball sign-ups will be held the week of Feb. 20 at the Rec Center
Country and Western dance-Six-week session begins March 12. Lessons
are held each Monday night. Cost is $\$ 20$ per couple.
$15 C$

## Dates \& Data

## Today

itical Houston Space Society-"Poldiscussed by Bill Agosto, president of Lunar Industries, Inc., at the Houston Space Society meeting at 7:30 p.m., Feb. 16, in the Atlantic room at the University of Houston. Call 639-4221
for information
Gem and Mineral Show-The Clear Lake Gem and Mineral Show, to be held Feb. 16-18 at the Pasadena Convention Center, 7902 Fairmont Parkway, Pasadena, will include a tour of Bldg. 31's Lunar Laboratory with briefing the group. The tour will leave briefing the group. The tour will leave the convention center at 5:30 p.m.
Friday; those interested in attending must register at the show. Show hours are 9 a.m to 8 p.m. Friday-Saturday and 10 a.m. to 5 p.m. Sunday. Contact: Mack Robinson at $\times 30803$ or 534 4696.

Cafeteria menu-Special: tuna and salmon croquette. Entrees: pork chop with yam rosette, Creole baked cod. Boup: seafood gumbo. Vegetables tered corn, whipped potatoes.

## Monday

Presidents Day-Most JSC offices

Day holiday.
Tuesday
Cafeteria menu-Special: stuffed cabbage. Entrees: turkey and dressing, round steak with hash browns. Soup: beef and barley. Vegetables: corn cobbette, okra and tomatoes, French beans.

## Wednesday

Houston Space Business-The monthly luncheon meeting of the Houston Space Business Roundtable will begin at 11:30 a.m., Feb. 21, at the American Host Hotel. The speaker is Viet Hanssen of Hanssen International; call 486-5068 for reservations.
Cafeteria menu-Special: pepper steak. Entrees: catfish with hush puppies, roast pork with dressing. Soup: seafood gumbo. Vegetables. broccoli, macaroni and cheese, stewed tomatoes.

## Thursday

AIAA dinner meeting-The American Institute of Aeronatics and Astronautics will present Dr. Alan Binder, a planetary scientist for Lockheed Engineering, speaking on "The Lunar Prospector Mission: A Private Initiative for Lunar Exploration" at its monthly dinner meeting at $5: 30$ p.m., Feb. २2, at the Gilruth Rec Center. Dinner
begins at 6:30 and the program at 7:30. Dinner reservations are $\$ 7$ for
members, $\$ 8$ for non-members, and $\$ 6$ for students. Call Sarah Leggio, 2823160 , by Feb. 16, for reservations and information.
Solar System seminar-The Solar System Exploration Division seminar series will present Dr. Colin Keay, University of Newcastle, speaking on "Electrophonic Meteor Atmospheric Entry Research" at $3: 15$ p.m., Feb. 22, in Bldg. 31, Rm. 129. Call Nadine
EAA Noontime Seminar-The JSC Employee Assistance Program will present Barbara Howard, from Women's Hospital of Texas, discussing "Are You A Victim of Premenstrual Syndrome (PMS)?" from 11:30-12:30 p.m., Feb. 22, in Building 30.

Cafeteria menu-Special: chicken fried steak. Entrees: beef tacos, barbecue ham steak, Hungarian goulash. Soup: turkey and vegetable. Vegetables: spinach, pinto beans, beets.

## Feb. 23

Cafeteria menu-Special: tuna and noodle casserole. Entrees: liver and onions, deviled crabs, roast beef with dressing. Soup: seafood gumbo. vegetables: whipped potatoes, peas, cauliflower.

## Swap Shop

Swap Shop ads are accepted from current
and retired NASA civil service employees and on-site contractor employees. Each ad must be submitted on a separate full-sized, revised JSC Form 1452. Deadline is 5 p.m. every Friday, two
weeks before the desired date of publication. Send ads to Roundup Swap Shop, Code AP3, or deliver them to the deposit box outside Rm. or deliver them
147 in Bidg. 2 .

## Property

Sale: Egret Bay Villas, $1 \mathrm{BR} /$ bay window, FPL , appl., batc.,
Trade Houses: Custom canyon view 4-3 off 360 West of Austin, prefer 5 yr old, open plan w/in 20 min. of JSC. 471-8795 or 333-6083. Sale: Seabrook, $3-2-2$, tormals, Ig den w/FPL, deck w/spa, trees, never flooded, $\$ 67,500$, $\$ 4 \mathrm{~K}$ total move-in. Rickard, $\times 30271$ or 474-9334. Sale: Nassau Bay colonial, 4-2-2, many
upgrades, home warranty, never flooded, upgrades, home warranty, ne
landscaped, $\$ 125,000.333-3547$.
Sale: Sycamore Valley, $3-2-2$, assume FHA Sale: Sycamore Valley, 3-2-2, assume FHA,
$\$ 848$ mo., no qual, $\$ 8500$ equity neg., owner fin., many extras. Steve, 484-7877.
Rent Ski Heavenly Valley at Lake Tahoe, NV, BR condo, $\$ 350 / \mathrm{wk}, 3 / 26$ to $4 / 2$. Tom, $\times 38298$ or 488-4089.
Sale: League City, 2.06 acres. $\$ 35,000$, near NASA. 554-6695.
Waterview condo, 3-2-2 covered, split master, new paint, carpet, appl., fans, pool, sec. gates, boat slips avail., $\$ 39,550.333-2524$.
Lease: Pipers Meadow, $3-2$ FPL new tile, 1 yr lease, $\$ 800 / \mathrm{mo}$, avail April 1. Rent: Baycliff mobile home lot, $\$ 85 / \mathrm{mo}$., $\$ 50$ dep. 488-1758.
Sale: League City, $3-2-2$, approx 1500 sq . ft., gyard, $\$ 55,000$, OBO. Jim, $\times 32167$ or $334-3069$ t., 4-2-2.5 det., wooded lot, formals, C/AH, FPL, sec . sys. 337-4168.
balc., all appl., W/D, alarm, ig $1-\mathrm{BR}$ condo, mini-blinds, no pets, $\$ 425$ + alas., CP, ceiling tan, or 332-2416.
Lease: Webster, El Dorado Trace, Ig 2-2.5
ownhome, FPL, W/D, ceiling fan, no pets, $\$ 575$ mo., + dep. Joe, x30255 or 480-5470.
Webster/Ellington, nice 2-1 apt, many extras,
$\$ 450 / \mathrm{mo}$. Dave, $\times 38156$ or $486-5181$ or Eric,
$\times 38420$. Sale/
Sale/Lease: Nassau Bay townhouse, 4-2-2
over 2000 sq. ft. w/2-story den, deck, atrium oversize gar, $\$ 109,900$ or $\$ 1,095 /$ mo. Jerry,
$\times 38922$ or $488-5307$. $\times 38922$ or 488-5307.
Sale: Ig. Iots, excl. subdiv. near NASA, mid
$\$ 30$ 's, can finance. Don, $\times 38039$ or $333-3313$. Sale: Kirkwood South x 38039 or 343 sq. ft., 4-2.5-2, formals, FP, study, walk-in closets near Dobie H.S., $\$ 78,500.488-5210$.

## Cars \& Trucks

$\mathrm{S}, \mathrm{PB}$, good cond. $\$ 2500, \mathrm{OBO}$ mi., $280-202 \mathrm{dr}$, $488-8919$ g.
' 82 VW Rabbit conver. 55 K mi., AC, cass tereo, good cond., $\$ 6000$, OBO. 280-2028 or 88-8919.
'78 Honda Accord hback., 5 -spd, AC, AM/
FM, needs exhaust work, $\$ 300$. Eddie, $326-2106$ or 333-7029.
81 Ford Bronco (full sz w/remov. top), $4 \times 4$ W/mudders, reb. 351 , auto.. AM/FM, new carpet seat covers and gas tank, $\$ 2800$, OBO. Richard
$\times 30271$ or $474-9334$.
79 Pontiac Grand Am, blue and silver, 2-dr. PS, PB, AM/FM/cass., good tires,
inspection, $\$ 1700$. Eric, $554-6170$.
78 Ford $T$-Bird, full pwr access.
hop manuals, ex. cond $\$ 1250.4$. $\mathbf{~ m a i n t . ~ r e c ~}$
${ }^{7} 79$ Fleetwood mobile home $14 \times 70,6326$.
furn., new energy eff. A/C, WD,
heater. $\$ 9500$. Cherri, 280-2039.
81 Olds Toronado, $\mathrm{V}-8$, all options, showroom cond. in and out, $\$ 3300$. $\times 36158$ or $409945-$

8787 . | 8787. |
| :--- |
| 89 |
| 10 |

tape, auto., loaded, $\$ 12,200$, neg, $554-5002$ 87 Toyota Tercell hback, champagne, 2900 $\mathrm{mi}, \mathrm{A} / \mathrm{C}, \mathrm{AM} / \mathrm{FM} / \mathrm{Cass} ., 3$ new tires, new muffler. new battery, new license and inspection, 4 -spd. Pat, 337-4548.
83 Buick Reg
83 Buick Regal, ex. cond., AC, tilt, cruise, AM/

FM/ cass., 1 owner, $\$ 3000$. Mariann, $\times 39238$ or | 332-7557. |
| :---: |
| '65 Olds |

' 65 Olds Starfire, sport coupe, 106 K mi. one
owner, good cond., $\$ 3300$ OBO. Tom, $\times 38298$ owner, good
or $488-4089$.
, 84 Corvette coupe and wheels, 62 K mi., $\$ 10,350$. Wally, 280-1118 or 532-1953.
'79., Pontiac Phoenix, 62 K , clean int, reason'79 Pontiac Phoenix, 62 K , clean int., reason-
able. Wally, $280-1118$ or $532-1953$. '71 Volvo, runs great, good cond., A/C, $\$ 950$. 474-6977 or 326-2180
' 89 Olds Calais, med. metallic grey, loaded, mi., $\$ 11,500$. James, $\times 37548$ or $470-8759$., 20 K mi., 83 RX-7 GSL, gray w/red int., sunroof, 5 -spd., 60 K mi. on new eng., runs and looks great,
$\$ 4,500$. Dwane, $943-2773$. ' 86 Mazda B2000 Cab Plus SE-5 pkg., one
 84 Ford Ranger, $\mathrm{V}-6,55 \mathrm{~K} \mathrm{mi.} \$$,3300 , Shayla,
$\times 30167$. 81 Chevy Caprice, one owner, 25K mi. on
GM reman. diesel eng. $\$ 1250$. Hammack, 3262986 or $280-5159$
'88 Hyundai Excel SE, blk and silver, clean, 5-spd, 4 -d
$283-6150$.

189 Niss
'89 Nissan Sentra, $10 \mathrm{~K} \mathrm{mi.}, \mathrm{337-6090}$
' 85 Toyota MR2, silver, tail, fin, loaded, 5 -spd.,
ex. cond., 54 K mi. $\$ 6500$ OBO. Cindy, 779 . ex. cond., 4515 or Drawin, $\times 32142$.
45170 . '79 Cutlass Supreme Brougham, V-8, 2-dr,
A/C, PS, auto., titt, delux uphol., stereo cass., ex. cond., \$1895. 280-8796.
89 Ford Probe $L X$, blk w/tinted wdws, $A C$,
AM/FM stereo cass., 5 -spd, low mi, ex cond $\$ 1000$ and pick up payments, OBO. 333 - 6497 .
 brn int., factory alarm, sunr
mi . $\$ 9500$, neg. $464-8694$.
mi., $\$ 9500$, neg. $464-8694$.
86 GMC Safari mini van very cond., ${ }^{3} 86$ GMC Safari mini van, very clean, $\$ 8200$.
leather, $\$ 3500$. Don, x 38039 or $333-3313$
A/C, Nissan Sentra, white, 2-dr, CP, 84 K mi.,
A/C, 5 -spd, AM/FM/cass., good tires, $\$ 2500$,
OBO. Walt, $\times 35939$.
81 Datsun 280 ZX Turbo, T-tops, 2 -tone brown, auto., A/C, AM/FM/cass sport tires ex. cond., \$3400, OBO., 283-4171 or 486-8574. $\$ 4000$, OBO 923 , approx. $79 \mathrm{~K} \mathrm{mi.} ,\mathrm{good} \mathrm{cond.}$, $\$ 4000$, OBO. $333-7345$ or 474-2339
' 84 Cadillac
' 84 Cadillac Sedan Deville, choc. brown metallic, brown velour, one owner, low mi.,
$\$ 5600$. Mike, $333-2335$,
' 86 Chevy $\$ 10$, '86 Chevy S10 PU, blue
rack, BI Bk price. 479 -3934
' 75 AMC Matador, 2-dr, auto., very clean, runs great, $\$ 800$ OBO. $480-3344$.
86 Toyota Celica GTS
' 86 Toyota Celica GTS, pwr wdws, locks, seat, mirrors, sunroof, steering and brakes. 2. $\times 31188$ or 428-1310.
63 Classic VW Beetle, new tires, short block.
Jonhe, x30291 or 332-9976.
' 85 35' Mallard motor
852 35' Mallard motor home, loaded, low mi.,
$\$ 32,000$. 337-4051

## Cycles

82 Honda Mag.
$\$ 1199.532-1206$.

280-1500 ex. 3647 or 532-2181
Women's Raliegh 10 65. Gail, x39838

78 K,
78 Kawasaki KZ650, less than

## ${ }^{81} 81$ Suzuki 850 cc , Vetter fairing/windscreen

 oivests/eng. protectors, padded bk rest, shaft drive, low mi.or $488-1079$.
'86 Kawasaki Ninja 900, red/white/blue, 10 K mi., ex. cond., $\$ 2500$; ' 84 Kawasaki 440 jet ski,
$\$ 2000$; ' 83 Kawasaki 550 jet ski, $\$ 2000$. Andy

## 333-6671 or 332-9105

## Boats \& Planes

trlr., skis, fresh water $\$ 1595 . \times 35180$ or $326-3706$

## well equip., $\$ 4000$. Walt, $x 3593$

## Audiovisual \& Computer

Satellite sys., brand name DX, 2 receivers, antenna positioner, dish, hardware, some cable,
$\$ 1300.438-2951$. Commodore 1541 disk drive, 1702 color monitor, modem, Koala pad, software incl. Word
Writer, Flight Simulator, Print Shop, $\$ 400$, OBO. Writer, Flight Sin
Bob, 554-5346.
Atari $800 \times \mathrm{LL}, 64 \mathrm{~K}$ RAM, $\$ 50$; Commodore 64 $\$ 40$; software/books, $\$ 20$. Floyd, $\times 34709$. cartridges and access., $\$ 150$. Ed, x36969 or carridges

## Household

Dining rm/dinette set, Chromecraft modern $\$ 215$, OBO. Boyd, $488-8806$ or $482-5274$.
G.E. 14.8 cu.ft. upright freezer, white, ex cond., $\$ 150$; solid oak bunk beds w/mattresses, box springs, matching 6 -drwr dresser, $\$ 150$.
$480-8461$. Wards Signature 20 refrig., 3 -dr, 20 cu.ft., trostless, side-by-side, almond, ex. cond., $\$ 200$,
$480-8461$. Super Single w
$\$ 150.280-8546$.
$\$ 250$ rust La-Z - Byle entertainment center cond. 282-3985 or 488-0151.
Contemp. solid oak king sz waterbed, w/six drwrs under and mirrored hdbd w/matching
highboy dresser and nightstand, like new, $\$ 850$ highboy dresser and nightstand, like new, $\$ 850$ 282-3985 or 488-0151
matt., $\$ 100$, OBO. Elaine, $333-3992$
$25^{\prime \prime}$ Fisher color console TV, ster
control, cable ready, works great, $\$ 500$. Bob.
$554-5346$. 554-5346.
Magnavox compact audio system w/db
cass., CD player, AM/FM/ turntable $\$ 250$, cass., CD player, AM/FM/ turntable, $\$ 250$ 150 watt/chan. Carver receiver, 1 yr on warr.,
$\$ 450$; TEAC ZD-700 CD player, $\$ 150$. David, 554-2992.
White oval kitchen table w/4 cush chairs and
leat, $\$ 100.282-3788$ or $480-2188$.
Solid blonde oak BR suite; twin beds,
bedding, night stand, 5 -drwr chest, $\$ 395$. 333 -

## Two-piece sect. sofa, ottoman, rust, $\$ 80.480$ -

9545 .
Super single waterbed, 6 drwrs under., ex.
shape, compl., $\$ 65$. Marlene, $280-1500$ ext
3654 .
Soild walnut BR set, two twin beds w/matt.,
night stand, dresser w/mirror, $\$ 350$. Beth, $\times 37081$.
$19 " 1$
${ }^{19 "}$ color TV w/remote, \$225. Dave, x 32592 or 482-6673.
3 yr old king sz BR set ex cond hdbd base w/drwr, split semi-motionless matt. w/dual heaters, dresser w/hutch, two end tables, $\$ 600$ firm. 471-4100.
sz ma
2822.
2822.
Two ream Ethan Allen small sofas, salmon, blue ream fioral pattern, $\$ 250$ ea., 488-4576. Roll-top desk, all wood, 4 yrs old, $\$ 115$. Karen
Love
leather Scandinavian recliner, like new, $\$ 400$ leather Sca.
$996-8410$.

## Musical Instruments

Fender concert amp, tube type, like new x. cond., \$795. Ed, 896-1035

Two band/PA column spkrs., Ovation 6119 Div. of Kaman, four $12^{\prime \prime}$ spkr. per case, $\$ 300$ essie, x35981.
Upright piano, good cond., \$400. 338-2754. old, $\$ 6,500,10$ yr. full warr. transf. Joe, $\times 32099$ old, $\$ 66,501,10$
or $946-8198$.

## Lost \& Found

Lost: bi-focal sunglasses. 333-6083
Found: Set of keys, Bldg. 24 sidewalk. OCC

## Pets \& Livestock

Silky terrier pups, ex. pedigree, AKC Ch
sired, $2 \mathrm{M}, 3$ mos. old, $\$ 400 / \mathrm{ea}$. Cindy, 488 .
6324.
Yorkie, AKC Reg. male, 10 mos., comes w
$4 \times 4$ playpen, carrying cage, other access.
4x4 playpen, carry.
Kimberly, 283-6150.
Free 6 mos. old kitten, very aff
beautiful coat. 333 - 6662 or 280-8425
Cocker Spaniel, M, AKC, looking to breed Tamela, $\times 36159$ or $472-6323$.

## Wanted

Want prop. in Bacliff, raw land, util., housing
5 any form. 333-6558 or 339-1337.
b-string banjo player would like to meet 480-9.968.
Want
Want Beta VCR in good cond., age
problem. Michael, $\times 38169$ or $482-8496$.
Want babysitter to care for 6 mo. old in you
nonsmoking home, Seabrook/Nassau Bay F, 7:30-5:30 p.m. $\times 36616$ or 474-7496. Want cars or trucks, running or not, any cond

# Reference approaches juggle cost, schedhle periowance 

## The Human Exploration Initiative

(Editor's note: This is the sixth instalment in a series of articles summariz ing the Report of the 90-Day Study on Human Exploration of the Moon and Mars. The final excerpt will be published next week.)

The mission described in the previous section was developed to provide a framework within which various approaches to and elements of the Human Exploration Initiative could be examined. Once the mission itself ha been defined, the next step in the study process was to examine a number of reference models to deter mine which parameters most significantly affect feasibility and cost. For instance, the program could be driven by schedule, as Apollo was, or phased so that a major technology and system development program precedes the actual development of the mission ele ments. Various elements could be more heavily emphasized; for exam ple, the lunar outpost could focus more on achieving self-sufficiency than on serving as a proving ground for human exploration of Mars. The program could be budget-constrained, or the decision on final dates and associated funding could be varied to meet other policy objectives.
In order to provide the data necessary to make these types of assessments, several reference approaches were selected to determine which parameters drive such things as cost, schedule, complexity, and program risk. In all, five reference approaches were analyzed; these approaches can be used by the agency and the National Space Council in determining the appropriate scope, scale, schedule, and strategy to be used in imple-
menting the President's program.

## Reference Approach A

The strategy around which this approach is formulated is to establish human presence on the Moon in 2001 using the lunar outpost as a learning center to develop the capabilities to move on to Mars. Key features include an aggressive schedule leading to permanent human occupancy of the Moon in 2002, with lunar development leveling off in 2012 to provide the funding flexibility to begin Mars exploration. An initial expedition to Mars allows a 30 day stay on the surface, with the fir 600 -day visit beginning in 2018. An unmanned test flight of the lunar transfer and excursion vehicles in 1999 is the first lunar activity supported by Space Station Freedom. The first unmanned cargo flight in 2000 emplaces the initial habitation module, airlock, and power system for four crew members who arrive in 2001 for a 30-day mission.
Two more flights emplace additional surface habitation, science equipment, laboratory, and power facilities. A lunar excursion vehicle servicer is provided to maintain a reusable vehicle on the lunar surface. In early 2002, the second crew begins permanent occupancy of the lunar outpost with a 6month stay. Beginning in mid-2002 when the third crew arrives, reusable lunar excursion vehicle operations are initiated, and the excursion vehicle is
maintained at the outpost. Twelvemonth crew tours of duty begin at this time. The initial nuclear power unit and the lunar oxygen production demonstration hardware are added in 2003
Human exploration focuses on local geologic and geophysical exploration, with regional exploration accomplished telerobotically. The first elements of astronomy telescope arrays are deployed, and a network of geophysical and particle physics stations is started. Lunar laboratory activities include human biomedical research and geochemical sample analysis. Outpost capabilities increase as the constructible habitation module is erected, outfitted, and occupied in 2005. Two lunar excursion vehicles, one cargo and one piloted, are simultaneously maintained on the lunar surface.

In 2006, the number of crew members expands to eight, consisting of two groups of four who serve rotating 12 -month tours of duty. At this point, the outpost is capable of conducting a long-duration partial-gravity test in support of Mars mission planning in 2008 the surface nuclear ning. In 2008 , the surface nuclear stantially to 550 kilowatts A complete 1,000 -day Mars mission is simulated 1,000-day Mars mission is simulate using the outpost and Freed
In 2010, the lunar oxygen plant is emplaced and operated to produce 60 emplaced and operated to produce 60 metric tons of oxygen per year, which saves transporting this oxygen from Earth. The lunar outpost continues to operate with a crew of eight until 2012, when the outpost enters a sustained steady-state period with one lunar flight per year and four crew members serving 12 -month tours.
The human exploration of Mars begins with an initial expeditionary piloted flight, a dedicated cargo flight, and a second piloted flight to begin extended-duration operations. The Mars transfer and excursion vehicles are assembled at Freedom. Full propellant tanks are launched separately and assembled to the vehicles at Freedom. The first piloted Mars expedition departs Space Station Freedom in 2015. Four crew members arrive at Mars in 2016, aerobrake into Mars orbit, and descend to the surface for a 30-day stay. Part of the payload delivered to the surface is a habitat module with an airlock and utility systems to
support the crew during their stay. The crew members conduct local science and exploration within a 10 -kilometer range of the outpost using unpressu ized rovers. Teleoperated rovers explore and sample to distances of 50 kilometers, and provide regional geologic information and resource locations. Exploration focuses on studying past and present geologic and climatic environments, including the search for past and present life and water environments. The human explorers are studied to understand the effects of liv ing and working on Mars. The crew returns to the vicinity of Earth in the transfer vehicle (without aerobrake) transferring to a separately carried Earth crew capture vehicle just prior to arrival at Earth orbit in 2016.
The permanent habitation facility and its associated airlock and utility subsystems and the necessary emplacement and construction equipment to deploy it are delivered to Mars on the second flight, a cargo flight that departs Earth in 2017 and arrives at Mars in 2018. Other payload delivered includes an additional rover and a vehicle launch and landing facility capable of supporting the excursion vehicle for up to 600 days.
The second piloted flight leaves Earth and arrives at Mars in 2018. The four crew members live in the initial four crew members live in the intruct and activate the permanent habitation facility. When the permanent habitat has been activated and occupied, the has been activated and occupied, the 600 days. An early task is the demonstration of a Mars water extraction process.
The crew from the second manned flight leaves Mars and arrives at Earth in 2020. The next manned flight departs Earth and arrives at Mars in 2020. During their 600-day stay, the four crew members continue the water extraction demonstration, the oxygen production experiments and more detailed geologic and geophysical exploration and evaluation of

## resources.

In 2022, a one-way cargo flight departs Earth, arriving at Mars in 2023. This flight transports additional consumables, spares, and science equip ment to support the next piloted flight, which departs in 2024 and arrives at Mars in 2025. Steady-state operations then commence.

To support this schedule, the reedom "assembly complete" date will require a heavy-lift launch vehicle Shuttle-C is the only concept being considered in this time frame. Freedom must support two expendable lunar missions per year through 2002, at which time it must be capable of supporting reusable vehicle capable ions at the same rate Beginning in tions at the same rate. Beginning in 2004, Freedom must support up to hree lunar missions per year. Beginning in 2011, the smaller heavy-lift vehicle configuration will be used to augment the Freedom lunar mission coniguration to support a test fight of the Mars aerobrake in 2013, and again to support the initiation of human Mars missions in 2015. The Mars transportation vehicle elements will be launched to Freedom begin ning in 2014 for the Mars vehicle piloted flight in 2015, using a larger heavy-lift launch vehicle with a 12.5 meter diameter by 30 meter long pay load shroud, which is capable of lifting 140 metric tons to Freedom. This vehi cle will launch all subsequent Mars transportation vehicles.

Reference Approach B
This approach is a variation of reference approach A, which advances the date of the first human Mars landing to 2011. In order to preserve fund ing flexibility to initiate activities at Mars, it is also necessary to accelerate development of the capability for lunar oxygen production, leading to the need for very early emplacement of a nuclear power system on the Moon. This approach limits the degree to which lunar outpost opera degree to which lunar outpost opera design of the Mars transportation and design of the ma

## surface systems.

The need to conduct the Mars outpost development activities in parallel with heavy lunar activity also results in a higher resource requirement in the first decade of the next century. In order to support the parallel set of lunar and Mars activities with minimum resources, other lunar infrastructure, such as the constructible habitat, is somewhat delayed, and lunar operations level off much earlier to a steady state mode involving four crew members and one lunar flight per year.
$\square \square$

## Dates

| Milestone | Reference <br> Approach <br> A | Reference <br> Approach <br> B | Reference <br> Approach <br> C | Reference <br> Approach <br> $\mathbf{D}$ | Reference <br> Approach <br> E |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Lunar Emplacement | $1999-2004$ | $1999-2004$ | $1999-2004$ | $2002-2007$ | $2002-2007$ |
| Lunar Consolidation | $2004-2009$ | $2004-2007$ | $2004-2008$ | $2007-2012$ | $2008-2013$ |
| Lunar Operation | $2010 \rightarrow$ | $2005 \rightarrow$ | $2005 \rightarrow$ | $2013 \rightarrow$ | $2014 \rightarrow$ |
| Humans On the Moon | 2001 | 2001 | 2001 | 2004 | 2004 |
| Permanent Habitation | 2002 | 2002 | 2002 | 2005 | - |
| Constructible Habitat | 2005 | 2006 | 2007 | 2008 | 2011 |
| Eight Crew | 2006 | 2007 | 2007 | 2009 | - |
| Lunar Oxygen Use | 2010 | 2005 | 2005 | 2013 | - |
| Lunar Farside Sortie | 2012 | 2008 | 2008 | 2015 | 2022 |
| Lunar Steady State Mode | 2012 | 2008 | 2012 | 2015 | - |
| Mars Emplacement | $2015-2019$ | $2010-2015$ | $2015-2019$ | $2017-2022$ | $2024 \rightarrow$ |
| Mars Consolidation | $2020-2022$ | $2015-2018$ | $2020-2022$ | $2022 \rightarrow$ | - |
| Mars Operation | $2022 \rightarrow$ | $2018 \rightarrow-$ | $2022 \rightarrow$ | - | - |
| Humans on Mars | 2016 | 2011 | 2016 | 2018 | 2016 |
| Extended Mars Stay | 2018 | 2014 | 2018 | 2023 | 2027 |

To enable people such as those in this illustration to live in the hostile environments of the Moon and Mars, sophisticated technologies, systems and strategies are needed. Cost, schedule, complexity and program risk must be fully analyzed and the various approaches must be compared against one another. This analysis will help establish the scope, scale, schedule and strategy needed to implement President Bush's program of expanding human presence in the solar system.

## REFERENCE APPROACH C

This approach is also a variation of reference approach A. The key emphasis is that this approach advances to 2005 the date by which lunar oxygen production is available to reduce lunar outpost logistics requirements, creating an earlier opportunity for Mars outpost development. As with reference approach B, early lunar oxygen production requires very early emplacement on the Moon of surface nuclear dynamic power system capability.
The early emplacement of the lunar oxygen plant delays the emplacement of other infrastructure, such as the constructible habitat, and also post pones the date for the transition to a crew of eight. The transition of the lunar outpost to a steady-state mode of four crew members and one lunar flight per year can be slightly accelerated, but a significant period is preated, but a significant period is members are available for performing lunar science activities.

The relationship between lunar and Mars outpost hardware development remains a serial one, in which designs of Mars outpost transportation vehicles and surface elements are significantly influenced by lunar outpost operational experience.

## Reference Approach D

The scale and content of this approach are identical to those of reference approach $A$. The sequencing and phasing relationships between key program milestones remain approximately the same but the milestones are all delayed by 2 to 3 years, with a return to the Moon in 2004. This approach does not accelerate the "assembly complete" date of Freedom, and generally allows more time to complete and incorporate time to complete and incorporate

## REFERENCE APPROACH E

This appropach reduces the scale of lunar outpost activity by using only a human-tended mode of operation and limiting the flight rate to the Moon to one mission per year. It also increases the number of expeditionary flights to Mars prior to establishing a permanent outpost there. Initial lunar operations are consistent with the currently planned Space Station Freedom "assembly complete" date of 1999. In 2004, the first humans return to the Moon. Occupation of the lunar outpost facilities is on a continu ing man-tended operations basis involving one lunar flight per year, with crew tours of duty ranging from 30 days to 6 months, and with the outpost unmanned for periods up to 12 months. (One exception wo simulate stays on Mars.) In 2011, lunar oxygen production is accomplished, but only in small demonstration quantities. The in small demonstration Mars in 2016. Three Mars expeditionary missions of Three Mars expeditionary missions of
increasing surface stay time up to 90 days precede the establishment in days precede the establishment in
2027 of a permanent Mars outpost with 600-day occupancy.

## Page

## NASA scientist says pollution can cool Earth's climate <br> "Changes in cloud reflectivity,

A scientist at NASA's Goddard Space Flight Center has co-authored a report that provides new evidence that pollution can modify clouds so that they help cool the Earth's climate.

The study's findings exemplify the complexity of the global climate and the fact that scientists do not understand the processes well enough to make unequivocal predictions about long-range climate trends such as the greenhouse effect.
In a study published in the journal Science, Michael D. King, of God-
dard's Laboratory for Atmospheres and his colleagues observed the effects of pollution from ships burning ossil fuels on shallow layer clouds.
The study, co-authored by Lawence F. Radke, University of Washington, and James A. Coakley r., Oregon State University, used simultaneous measurements from the NOAA-10 satellite and the University of Washington's C-131A research aircraft. The observation of these "ship track" clouds were conducted off the coast of California on July 10, 1987.
resulting from the burning of fossil fuels, are expected to have a cooling effect on global climate," said King. "Our study reports new evidence that the cooling effect will be larger than previously predicted
Explaining the effect of pollution on clouds, King said, "Pollution serves as a source of particles around which cloud droplets form. These particles are called cloud condensation nuclei. Increases in pollution are expected to lead to increased numbers of these nuclei, which compete for liquid water
in the cloud. With more nuclei, the cloud contains more droplets, which are smaller in size.
'Our paper shows that these changes are indeed taking place in the portions of maritime clouds that have been polluted by underlying ships," said King. "However, we discovered that the polluted clouds contained more liquid water than the surrounding clouds. These observations indicate that clouds with smaller droplets suppress the loss of water by precipitation, thereby allowing water to remain in the clouds for
longer periods, which in turn increases cloud life span and pro-
longs their cooling effect on the longs th
The U.S. Global Change Research Program, in which NASA's Office of Space Science and Applications is major participant, will develop the scientific measurements for analysis of competing processes, such as the warming effect of atmospheric greenhouse gases and the cooling effect of clouds. The result will be a more solid foundation on which to base policy decisions.

## Car decals to be issued

The JSC Security Division will security officers. Completing the form begin issuing redesigned vehicle decals to all permanently badged employees on March 1
New decals will be issued in the main lobby of buildings in various onand off-site locations during March to facilitate the change. Current decals will not be valid after April 5.
JSC Security Officer Ron Wade said the reregistration is a semiannual event necessitated when employees leave or trade in cars and don't return their decals.
You must complete a vehicle registration record, JSC Form 1572, before you can receive a new decal. Blank forms will be available at the badge offices in Bldgs. 1, 5, 30 and 100, at the JSC Security Division Office, Bldg. 45, Rm. 211, and from contractor
before going to a decal desk will speed the registration process.
Current decals must be removed but do not need to be returned.
Decal desks will be open during business hours at the following onsite locations.
Bldg. 1, March 1-2; Bldg. 4, March 5; Bldg. 29, March 6; Bldg. 16, March 7; Bldg. 30, March 8-9; Bldg. 419 March 12; Bldg. 32, March 13; Bldg 37, March 14; Bldg. 45, March 15
Off-site locations include:
Nova Bldg., March 16; RSOC March 19-20; Ellington Field, March 21; Barrios Bldg., March 22; IBM Corp., March 23; Lockheed, March 26; CSC, March 27; McDonnell Douglas, March 28; and Ford Aerospace, March 29

JSC retiree badges now available
A specially designed JSC retire- used in the same manner as the ment badge is now available to those retiring from the center, in addition to the NASA retirement badge usually issued at retirement.
The new JSC badge, designed by JSC's Security Division, pictures the different generations of the space program experienced at the center. The last organization where the employee worked before retirement also is named.
The JSC retirement badge may be

## Cupid's arrow goes through hoop for JSC worker

## By James Hartsfield

Almost anyone would agree that Cupid's arrow doesn't always follow a direct path, but for JSC employee Rex Boyce, it went through hoops and will end up in Cancun, Mexico.
Boyce, a T-38 quality assurance inspector at Ellington Field, was surprised by his wife, Dinah, with two
tickets to see the Houston Rockets play the Boston Celtics on Valentine's Day eve. An avid Rockets' fan, he attended the game with his brother. But then luck, or Cupid, or fate, or what anyone wants to call it, took over. At halftime, Boyce's ticket stub number was called out of more than 15,000 possibilities for a chance to
shoot in. a free-throw contest. Boyce was allowed Boyds and he made only 24 seconds, and he made a basket from behind the three-point line
free trip for two to Cancun.
"It was just an unbelievable Valentine's," he said. "They called my number which I thought would never
happen. And when I got home and told her, she couldn't believe it either." Although it could have been an added ribbon on the present, the Rockets ended up losing 107-94. But one die-hard fan still left happy.

I was so excited from halftime, don't really know what happened after that," Boyce added.

## Lunar and Mars Program Office comes to JSC

(Continued from Page 1) of implementing the architecture. "We are now doing, what for spacecraft would be, Phase A studies," Craig said. "The difference is constellation of vehicles and ons That's on ve our and sys ems. That's one of our challenges. Ne have to design a mission, an architecture of vehicles and systems: outposts on the surface of the Moon and Mars, space transfer vehicles that journey through the void, robotic spacecraft that lead the way, and heavy-lift launch vehicles that carry the largest elements to Earth orbit."
One of the office's primary tasks is to determine how the exploration initiative is executed in the future. Technologies and expertise from all areas-communications, life scien-
ces, transportation, Space Station Freedom - will need to be corralled and organized efficiently to accomplish the goals set forth by President George Bush in his speech commemorating the thrst Moon landing Craig said of the first Moon landing, Craig said. NASA will interface with every major NASA organization and will be working with every NASA organization and Headquarters to figure out what the efficient allocation of resources is across the agency," he said.
"The exploration initiative provides a strategic focus and integrated basis for the planning of many agency activities: heavy-lift launch vehicles, Space Station Freedom evolution, echnology development life scion, ces research, the Deep Space Network, and more," Craig said. "It
also provides a framework for center strategic planning. Although Adm Truly has stated that center roles and missions for initiative hardware development will not be decided for several years, it is important that each center begin the process of identifying its priorities and interests and develop supporting capabilities.
In that vein, the New Initiatives Office will retain the Planet Surface Systems Office and Mars Sample Return Office.
"Johnson, with its history and experience, has a very real responsibility to help shape the initiative," Craig said. I think we've been given a wonderful opportunity here as a center to help the agency sort this thing out and define what it's going to be. It's an awfuly
important challenge for JSC, but I know
hat we're up to it'
One of the biggest challenges for both NASA and JSC is developing the ability to handle several large programs simultaneously, Craig said. "This center has a lot of work to do," Craig said. "It's got a lot of work to do on the shuttle. It's got a whole lot of work to do on space station and it's got a lot of work to do on the lunar and Mars initiative. We cannot use the methods we've used in the past of working on one program at a time. We are going to have to find ways for all our people to work on each of these programs as their expertise is needed Section and branch supervisors and their counterparts in program and project offices will play a big role in meeting this challenge.

## LDEF data book begins to reveal details of space environment

## (Continued from Page 1 )

The number and positions of surface impacts on LDEF is about what was expected, he said. There are more impacts on the leading edge and space--facing end of the 12 sided, school bus-sized cylinder. The majority of the leading edge impacts were expected to be caused by orbital debris from rocket and satellit reak-ups, and the space-facing impacts are mostly natural

Kessler said that from a Space Station Freedom design viewpoint, "it is easy to protect against everything we're seeing so far.'
Dr. Jim Alston of George W. Park Seed Co., Greenwood, S.C., coprincipal investigator for the Space Exposed Experiment Developed for Students (SEEDS), said the thermal shield that protected 150,000 tomato shield that protected 150,000 tomato
seeds are to be one of the first Washington, D.C., 20546.
experiments removed from LDEF on Feb. 21 and will go through preliminary laboratory analysis before being sent to teachers for use in school projects.

So far, 90,000 SEEDS study kits have been requested by teachers throughout the country. Another 60,000 kits are still available to teachers who write to the NASA SEEDS Project,
Code XEO, NASA Headquarters,

Alston estimated that between and 4 million students will be conducting experiments on the space faring tomato seeds this spring.

What we're seeing and hearing bout this morning is a little bit like looking at the cover of the LDEF data ook," Kinard said. "There's a lot more information there. We're simply looking at surface effects simply looking at surface effects right now." NASA retiree badge on site, but will facilities.
The JSC retirement badge is optional. The receptionist will type to suit any information the retiree requests regarding directorates divisions, branch names, mail codes, and acronyms on the badge. Retirees desiring the JSC badge may have them prepared in the badging office during regular business hours.

## Space News Roundup

The Roundup is an official publication of the National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Texas, and is published every Friday by the Public Affairs Office for all space center employees.

Swap Shop deadline is every Friday, two weeks before the desired date of publication.

Editor
Kelly Humphries
Associate Editor . . Linda Copley

## JSC economic impact

(Continued from Page 1) third behind California (\$2.7 billion) and Florida ( $\$ 1.2$ billion) in states receiving NASA funds for contracts or grants.

The center employed 3,773 civil servants in fiscal ' 89 compared to 3,552 the year before. Peak space industry employment in the JSC area occurred in 1989 with 11120 aerospace industry and support contractor personnel working on or near the center.

## Correction

