EARLY LUNAR SHELTER DESIGN AND COMPARISON STUDY

BOOK 1 STRUCTURAL DESIGN AND LM/T INTEGRATION
BOOK 2 REVIEW OF SCIENTIFIC

BOOK 3 HASSLE ANALYSIS OF PROPOSED SCHEDULE

FINAL REPORT.

GEORGE C. MARSHALL SPACE FLIGHT CENTER

VOLUME SUMMARY (PART 1) BOOK 1 MANAGEMENT SUMMARY 67-1964-1
 SUMMARY (PART 2) BOOK 2 TECHNICAL SUMMARY

VOLUME 2 mission timelines and reourrements

BOOK 1 ELECTRICAL POWER
SUBSYSTEMS [PART 1] book 2 environmental control/ LIFE SUPPORT
$\underset{67-1964-3}{\text { VOLUME }}$
BOOK 3 FLUID CONTAINMENT
SUBSYSTEMS (PART 2) BOok 4 Thermal CONTROL
BOOK 5 ASTRIONICS

VOLUME 4 system integration and configuration design

VOLUME 5
 RESOURCE PLAN

book 1 STRUCTURAL DESIGN AND LM/T INTEGRATION

VOLUME
 67-1964-6
 6
 SUPPORTING STUDIES

BOOK 2 REVIEW OF SCIENTIFIC MISSION REQUIREMENTS

BOOK 3 HASSLE ANALYSIS OF PROPOSED SCHEDULE

VOLUME 6

SUPPORTING STUDIES

EARLY LUNAR SHELTER DESIGN AND COMPARISON STUDY

BOOK 1 STRUCTURAL DESIGN AND LM/T INTEGRATION
BOOK 2 REVIEW OF SCIENTIFIC MISSION REQUIREMENTS
BOOK 3 HASSLE ANALYSIS OF PROPOSED SCHEDULE

67-1964-6

FINAL REPORT

CONTRACT NUMBER
NAS 8-20261

NATIONAL AERONAUTICS
SPACE ADMINISTRATION

GEORGE C. MARSHALL
SPACE FLIGHT CENTER

AIRESEARCH MANUFACTURING DIVISION
Los Angeles, California

F-7880
FOREWORD

This report was prepared by personnel of the AiResearch Manufacturing Company, Los Angeles, California, under Contract NAS8-2026I, "Early Lunar Shelter Design and Comparison Study." The program was monitored by W. D. Powers of the NASA George C. Marshall Space Flight Center, Huntsville, Alabama. W. L. Burriss, N. E. Wood, and M. L. Hamilton were prineipal authors of this report at AiResearch. This final report consists of the following volumes:

$$
\begin{aligned}
& \text { Volume } 1 \text { - Summary } \\
& \text { Volume } 2 \text { - Mission Timelines and Requirements } \\
& \text { Volume } 3 \text { - Subsystem Studies } \\
& \text { Volume } 4 \text { - System Integration and Configuration Design } \\
& \text { Volume } 5 \text { - Resource Plans } \\
& \text { Volume } 6 \text { - Supporting Studies }
\end{aligned}
$$

Honeywell, Incorporated, and Grumman Aircraft Engineering Corporation were subcontractors in the study. Grumman was responsible for structural design and LM/T integration. Honeywell assisted in the analysis of crew tasks and performance. The subcontractor studies are contained in Volume 6.

AIRESEARCH MANUFACTURING DIVISION

The supporting studies contained in Volume 6 are divided into three books, as follows:

Book 1 Structural Design and LM/T Integration
Book 2 Review of Scientific Mission Requirements
Book 3 HASSLE Analysis of Proposed Schedule

Book 1 contains a portion of the work performed by the Grumman Aircraft Engineering Company under this contract. Other parts of the Grumman work are integrated into other volumes of the report. In addition to the work appearing here, Grumman furnished detailed performance and cost data concerning the Apollo Lunar Module (LM) subsystems and components applicable to the ELS. These data were used by AiResearch in the subsystem and resources planning studies. M. G. Grubelich was Grumman Principal Investigator for this study.

Books 2 and 3 were prepared by Honeywell, Incorporated under this program. Honeywell personnel participating in these studies include L. P. Schrenk, R. D. Kinkead, J. E. Haaland, O. H. Lindquist, and D. S. Hanson.

BOOK 1
 STRUCTURAL DESIGN AND LM/T INTEGRATION

CONTENTS

Section Page
1 INTRODUCTION $1-1$
2 SUMMARY 2-1
3 SHELTER CONSTRAINTS AND REQUIREMENTS 3-1
4 SHELTER CONCEPTUAL DESIGN 4-1
General 4-1
Selection of Candidate Configurations 4-6
Selection of Recommended Configuration 4-14
Outboard Profiles 4-14
Inboard Profiles 4-24
Structural Arrangements 4-34
Mass Summaries 4-51
Recommended Configuration 4-53
Structural Criteria and Loads 4-54
Design Loads Criteria 4-54
Mission Level Loads and Accelerations 4-54
Vibration 4-55
Cabin Pressure 4-60
Vibration and Acoustics 4-60
In-situ Deployment 4-60
Conceptual Design Structural Considerations 4-64
Materials 4-64
Form/Construction of Pressure Elements 4-65
Location of Primary Structural Elements 4-73
Pressure Wall Penetrations 4-74
Service Lines 4-79
Payload Deployment $4-84$
Shelter Azimuth Orientation and Unloading 4-89

CONTENTS (Continued)
Section Page
Shelter Leveling 4-94
LSSM Unloading 4-104
Scientific Equipment Unloading 4-107
Crew Access 4-108
Radiation and Micrometeoroid Protection 4-110
Radiation Analysis 4-110
Micrometeoroid Analysis 4-118
Final Version of the Recommended Configuration 4-128
Outboard Profile 4-129
Inboard Profile 4-129
Structural Arrangements 4-135
Mass Summary 4-145
Fabrication - Assembly 4-148
5 RELIABILITY 5-1
6 DERIVATIVE SHELTERS 6-1
Increased Volume 6-1
Transportability 6-3
REFERENCES R-I

ILLUSTRATIONS

Figure		Page
2-1	Early Lunar Shelter. (ELS). Recommended Configuration	2-2
3-1	LM Truck Volume and CG Envelope	3-3
3-21	LSSM Storage Mode Configuration	3-8
4-1	Baseline Configuration 3 Horizontal Cylinder	4-7
4-2	Baseline Configuration 4 Vertical Cylinder	4-8
4-3	Baseline Configuration 3 Horizontal Cylinder Outboard Profile	4-9
4-4	Baseline Configuration 4 Vertical Cylinder Outboard Profile	4-11
4-5	Final Series of Shelter Configurations	4-13
4-6	Configuration 3B Outboard Profile	4-17
4-7	Configuration 4 Vertical Cylinder Outboard Profile	4-21
4-8	Configuration 3 B Horizontal Cylinder Inboard Profile	4-25
4-9	Configuration 3B Horizontal Cylinder Inboard Profile Launch Arrangement	4-29
4-10	Configuration 4 Vertical Cylinder Inboard Profile	4-31
4-11	Configuration 3 B Horizontal Cylinder Shelter Structural Arrangement	4-35
4-12	Configuration 3 B Horizontal Cylinder Outboard Equipment Structural Arrangement	4-41
4-13	Configuration 4 Vertical Cylinder Shelter Structural Arrangement	4-45
4-14	Configuration 4 Vertical Cylinder Outboard Equipment Structural Arrangement	4-50
4-15	Vibration Response, Weight vs G's, X Coordinate	4-61
4-16	Vibration Response, Weight vs G's, Y Coordinate	4-62

ILLUSTRATIONS (Continued)

Figure		Page
4-17	Vibration Response, Weight vs G's, Z Coordinate	4-63
4-18	Configuration 3B Shelter Structure Arrangement Honeycomb Shell	4-69
4-19	Configuration 3B Airlock Door	4-77
4-20	Configuration 3B Airlock Door Latching Seal Clamp	4-80
4-21	Bulkhead Fluid Fitting	4-82
4-22	Bulkhead Electrical Fitting	4-83
4-23	Cross-Section of Viewing Port	4-85
4-24	LM Truck As-Landed Diamond Pattern	4-87
4-25	LM Truck As-Landed Square Pattern	4-88
4-26	Azimuth Orientation and Unloading of Shelter from Truck	4-91
4-27	LM Truck Levelling Technique No. I	4-96
4-28	LM Truck Levelling Technique No. 2	4-97
4-29	LM Truck Levelling Technique No. 3	4-98
4-30	Shelter Levelling, Truck As-Landed	4-100
4-31	Shelter Levelling Mechanism	4-101
4-32	Unloading of LSSM	4-105
4-33	Equipment Unloading Device	4-109
4-34	Solar Flare Protection	4-112
4-35	Solar Flate Radiation Shielding - 4 Week Exposure	4-113
4-36	Solar Flare Radiation Shielding - 6 Week Exposure	4-114
4-37	Solar Flare Radiation Shielding - 8 Week Exposure	$4-115$
4-38	Solar flare Radiation Shielding - 10 Week Exposure	4-116
4-39	Solar Flare Radiation Shielding - 12 Week Exposure	4-117

ILLUSTRATIONS (Continued)

Figure		Page
4-40	Radiation Refuge Arrangement	4-119
4-41	Micrometeoroid Protection Optimization	4-123
4-42	Final Version Configuration 3B-Outboard Profile	$4-131$
4-43	Final Version Configuration 3B-Inboard Profile	4-133
4-44	Final Version Configuration 3B-Launch Arrangement	4-137
4-45	Final Version Configuration 3B-Shelter Structural Arrangements	4-139
4-46	Final Version Configuration 3B-Outboard Equipment Structural Arrangements	$4-143$
4-47	Final Version Configuration $3 B-\Delta$ Weight vs Δ Volume	4-147
4-48	Shelter Fabrication Assembly Schematic	4-149
6-1	Extensible Volume Version of Configuration 3B	6-2
6-2	Transportable Version of Configuration 3B	6-4
6-3	Shelter Transportation Power vs Slope	6-5

AIRESEARCH MANUFACTURING DIVISION

TABLES

Table	Page	
$3-1$	Consumables (For 2-Man-50 Day Stay Time)	3-5
$3-2$	Scientific Equipment	$3-5$
$4-1$	External Equipment (Initial Phase of Study)	$4-2$
$4-2$	Internal Equipment	$4-3$
$4-3$	Mass Summaries Configurations 3B \& 4	$4-52$
$4-4$	Pressure Wall Service Line Penetrations	$4-81$
$4-5$	Mass Summary - Final Version of Configuration 3B	$4-146$
$5-1$	Reliability Evaluation	$5-2$

SECTION I

INTRODUCTION

This is the final report of Grumman's participation in the Early Lunar Shelter Design and Comparison Study, NAS 8-2026l. The work was performed under a 10-month subcontract to the AiResearch Manufacturing Company, Purchase Order No. 218-70525-6. The objective of the study was to develop, define, and evaluate conceptual designs of lunar shelters, for application in the early $1970^{\prime} \mathrm{s}$, which can, after 6 months of unattended storage, sustain a 2 -man crew for at least 14 days. The shelter and required support equipment must be deliverable to the lunar surface by an unmanned Lunar Module/Truck (LM/Truck) using the Saturn V-Apollo system.

Grumman's primary responsibilities were the evolution of shelter payload configurations, preliminary structural sizing, micrometeoroid and radiation protection analyses, and integration of the shelter payload with the LM-Truck.

Additional responsibilities included providing design and operating characteristics and procurement costs pertinent to the electrical power, environmental control, and astrionics (communications, mission programmer, and instrumentation) subsystems of the Lunar Module (LM) to AiResearch.

The basis for Grumman's work is specified in the following:
a. Garrett Corporation, AiResearch Manufacturing Company Document 66-0232, Rev. 2, May 9, 1966 - Statement of Work for Grumman Aircraft Engineering Corporation
b. NASA Study Guidelines-Design Criteria and Reference Data Handbook for Lunar Exploration Systems

Volume I: General Criteria
Volume II: LM/Truck Shelter, Payloads
c. NASA Document - Statement of Work, Early Lunar Shel ter Design and Comparison Study, P-163, July 19,65

AIRESEARCH MANUFACTURING DIVISION

SECTION 2

SUMMARY

The shelter payload configuration studies by Grumman are documented in the body of this report. The supporting tasks performed by Grumman, such as LM subsystem data/descriptions and review of study guidelines are given in the Appendixes to this report.

A series of shelter concepts and the corresponding outboard and inboard profiles of overall shelter payloads were generated to ascertain the upper range of shelter volumes attainable consistent with the weights, volumes, and form factors of scientific equipment, reactant tankage, subsystem equipment, etc., for a 2- to 3-man multiweek staytime mission.

Preliminary results showed that about 550 to 600 cu ft was attainable for shelters having simple geometric pressure shell forms: right circular cylinders and spherical sectors.

Further iterations of the conceptual designs were performed to accommodate changes in equipment and expendable volumes and to satisfy a shelter volume goal of about 700 cu ft .

The resulting final series of shelter configurations were compared, and two candidate configurations were selected: a vertical cylinder and a horizontal cylinder.

In addition to further development of the outboard profiles used in selecting the candidate shelter configurations, inboard profiles, and structural arrangements of the overall shelter payload for each candidate configuration were developed to allow a more comprehensive comparison between vertical and horizontal cylinder shelters.

The horizontal cylinder shelter was selected as the recommended configuration because it more readily satisfies the functional form factors associated with required crew activities and equipment placement, provides greater shelter volume at less weight, and is simpler to fabricate.

As illustrated in Figure 2-1, it consists of an 8.1-ft-dia horizontal cylinder with 7 -ft radius spherical sector end domes; it has an overall length of 16 ft and a gross internal volume of approximately 750 cu ft . It would be fabricated primarily from 2219-T87 aluminum alloy and would have a structural weight of approximately 750 ib .

The shelter has a 2 -man air lock, internal arrangements for a 3-man crew, and satisfies the requirements of a mission duration of 6 months quiescent storage and 50 -day staytime.

Concomitant with the conceptual design of the shelter, radiation and micrometeoroid protection analyses were performed, and the required protection

Book I
provisions were integrated into the shelter payload configuration. "The radiation protection is afforded by internally stored equipment and supplies supplemented by polyethylene water blankets. Micrometeoroid protection is achieved by a bumper and backup sheet with a layer of foam in the spacing between them.

Deployment techniques and devices to bring the shelter payload from an "as landed" condition to operational status were also studied.

The preferred approach is to leave the shelter payload on the LM/Truck, level the LM/Truck, employ two devices for equipment unloading (jib boom and cable arrangement for scientific equipment packages, pivoting A-frame and cable arrangement for the Local Scientific Survey Module (LSSM)), and use a separate ladder and platform at the air lock door for routine access between the shelter and lunar surface.

This approach results in minimum overall weight penalty, minimum complexity of deployment devices, and minimum surface activities to attain shelter payload operational status.

The total weight of the shelter (including structural supports for all internal and external equipment, deployment devices, thermal insulation, radiation and micrometeoroid protection) is approximately 1600 lb.

SECTION 3

SHELTER CONSTRAINTS AND REQUIREMENTS

The NASA study guidellies (Reference 1) and statement of work (Reference 2) provided the initial definition of constraints and requirements. The generation of initial shelter concepts and the preliminary results of subsystem studies led to concurrence/direction by AiResearch to utilize the following ground rules for continued evolution of shelter configurations:

- LM/Truck payload volume and center of gravity (cg) envelope as shown in Figure 3-1
- 6-month quiescent storage mode
- 14- to 50-day staytime
- Consumable weights and volumes for a two-man, 50-day staytime as given in Table 3-1
- Habitable volume, equipment, and nonconsumable provisions for a 3-man crew
- 2-man air lock having 80 cu ft free volume
- 0.997=percent probability of no meteoroid puncture
- 0.99-percent probability of not exceeding 500 rad to the skin or 200 rad to the blood-forming organs (BFO)
- 15 deg horizontal attitude correction capability from an "as landed" maximum of 18 deg
- LM/Truck flight and landing loads as discussed in Section 4 under the heading STRUCTURAL CRITERIA AND LOADS
- Scientific equipment, as shown in Table 3-2, to be carried as part of the shelter payload

The LM/Truck is a Lunar Module (LM) descent stage modified by the addition of the reaction control, communications, guidance, and navigation equipment (normally carried in the LM ascent stage) to allow an unmanned landing of the Truck. It will be delivered to lunar orbit by a manned Apollo Command Module and Service Module (CSM). The CSM will transpose and dock to the LM/Truck after translunar injection in the same manner as for the LM. This will require a docking ring and drogue, on the top of the LM/Truck payload, identical to those located on top of the LM ascent stage. Following separation from the CSM, the Truck payload descends automatically to the surface along a flight profile similar to that followed by an LM.

Page Intentionally Left Blank

Page Intentionally Left Blank

TABLE 3-1
CONSUMABLES (FOR 2-MAN - 50 DAY STAY TIME)

EQUIPMENT	DIMENSIONS		VOLUME		MASS		COMMENTS
	CM	(IN)	CM ${ }^{3}$	(FT^{9})	KG	(LBM)	
150 LiOH Cartridges	15.2 DIA $\times 30.5$	(6x12)	834,000	(29.4)	272	(600)	Nominal dimensions per cartridge
Food			226, 500	(8)	75.4	(166)	No individual packages dimensions given
H_{2}	109x140	(43x55)	1,940,000	(68.2)	209	(460)	Dimensions per H 2 tank, 2 tanks required, dimensions exclusive of 5 cm high $\times 7.6 \mathrm{~cm}$ wide (2x3) girth rings. Mass of H_{2} per tank $=31.8 \mathrm{~kg}$ (70)
O_{2}	132 DIA SPHERE	(52)	1, 205,000	(42.6)	715	(1575)	Dimensions exclusive of 5 cm high $\times 7.6 \mathrm{~cm}$ wide (2×3) girth rings. Mass of $\mathrm{O}_{2}=636 \mathrm{~kg}$ (1400)
$\mathrm{H}_{2} \mathrm{O}$						*	Potable $\mathrm{H}_{2} \mathrm{O}$ initial fill $27.3 \mathrm{~kg}(60)$ at beginning of stay time 72.8 kg (160) available. (Maximum waste tankage capacity $298 \mathrm{~kg}(520)$)
Crew Hygenic Supplies, Disposable Garments, etc.			133,000 *	(4. 7)	21.3	* (47)	As shown in Table 4-8 Internal Equipment

TABLE 3-2
SCIENTIFIC EQUIPMENT

AIRESEARCH MANUFACTURING DIVISION

The payload volume envelope shown in Figure 3-1 differs in several details and contains additional constraining dimensions as compared to that shown in the study guidelines; the envelope is the same as that defined for the Apollo Extension System studies (precursor to AAP). The 5-in. clearance between the spacecraft LM adapter (SLA) and the payload envelope was increased to 7 in., and the upper surface of the volume contoured to accommodate a 7 deg gimbaling excursion of the Service Module engine nozzle during on-pad checkout.

The resulting primary envelope is a truncated cone of approximately 2050 cu ft with a base dia of 18 ft , upper dia of 15 ft and a height of 9.7 ft . To accommodate the solid angle requirement of the inertial measuring unit (IMU) and automatic star tracker mounted on the top of the $+Z$ landing gear truss, the conical surface of the payload envelope at this location is interrupted to form a flat plane surface. The volume of the triangular cross section annulus above the truncated cone is approximately 150 cu ft , but its configuration severely limits the usefulness of this volume to accommodation of small antennas or local protuberances of equipment from the primary envelope. In the vicinity of the S IV B adapter section of the SLA a 20 deg extraction angle, relative to the SLA, defines the clearance constraint for any equipment mounted on the LM/Truck faces. Also, and 8-in. clearance above the S IV B dome was used as the limit for equipment mounted below the Truck main structure.

Use of the volumes below station X-200 is limited due to the small, odd-shaped envelopes, close priximity to the reaction control system (RCS) units, and the desirability of minimizing the number of structural interfaces with the Truck.

The maximum payload capability is $10,300 \mathrm{lbm}$, and its cg must be within the envelope defined by a $2.5-\mathrm{in}$. radius about the vehiclets vertical (X) axis and stations $\times 232$ to 246.

The primary structure of the LM/Truck consists of two sets of parallel main beams (the two beams of each set are on 54-in. centerlines, and each is approximately 64 in . deep) arranged as a cruciform and interconnected by diagonal members. A tubular truss structure at each end of the cruciform transfers the Truck loads to the SLA. These cruciform beams are used to support the shelter payload.

The 6-month maximum unattended storage is a design specification of the study statement of work (Reference 2) for meteoroid shielding, cryogenlc boiloff and other time-related factors.

Results of initial subsystem studies defining weights, volumes, and consumable rates were the basis for considering staytimes of 14 to 50 days.

The tabulation of consumable weights and volumes shown in Table 3-1 is the final iteration in support of a 2 -man crew, 50 -day staytime, However, to facilitate subsequent considerations of growth potential or operational
airesearch manufacturing division
flexibility (without major reconfiguration of the shelters), shelter volumes, internal arrangements, and accoutrements were based on a 3-man crew.

The crew safety considerations implicit with having an air lock which could accommodate the ingress/egress operations of 2 men simultaneously far outweighed the minor reduction in work/living volume in the shelter as a result of the 2 -man air lock.

The 0.997-percent probability of no meteoroid puncture of the shelter during the storage and operational phases was assigned to satisfy the overall probability requirement of 0.99 . The protection analysis was based on the AAP meteoroid criteria.

The 0.99 -percent probability of not exceeding 500 rad-skin or 200 rad-BFO as specified by the study statement of work was considered as an upper bound, the requirements for lesser exposures and higher probabilities were also examined. The protection analysis was based on the solar flare data provided in NASA TN D-2746 (Reference 3).

The 18 deg maximum slope of the Truck horizontal plane relative to the local horizontal is specified by the study guidelines, the 15 deg correction capability was specified by AiResearch.

The LM/Truck flight and landing loads discussed in Section 4, STRUCTURAL CRITERIA AND LOADS are revised versions of those shown in the study guidelines to include the loads used in the AAP study program.

The scientific equipment summary shown in Table $3-2$ is the final iteration derived from NASA-approved revisions to the equipment volumes and weights given in the study guidelines. The influence of various equipment envelopes on the shelter configuration development is discussed later in this report.

The storage mode configuration, weight, and pertinent data for integrating the LSSM into the shelter payload are shown in Figure 3-2. Although the study guidelines also specified that a lunar flight vehicle (LFV) would be used on some missions, at NASA direction, this requirement was later dropped. The LSSM was considered in the development of the shelter outboard profiles since it occupies! about 4 times the volume of the LFV and has a more difficult form factor to accommodate in the payload envelope. Consequently, if desired, the LFV could be substituted for the LSSM at a later date.

Figure 3-2. LSSM Storage Mode Configuration

SECTION 4

SHELTER CONCEPTUAL DESIGN

GENERAL
The conceptual design of the shelter and overall payload arrangement was an iterative process guided by the volume - weight interactions of the following overall mission/system constraints and requirements:

- LM/Truck payload envelope
- Scientific equipment and the LSSM
- Multi-man crew habitability for staytimes greater than 14 days
- Expendables and equipment to sustain the shelter operation and mission activities

The conceptual design was initiated by determining the volume available for the shelter after accommodating other components of the payload within the $2050 \mathrm{cu} f \mathrm{ft}$ primary envelope. The volumes and dimensions for all externally located equipment as specified in the initial phase of this study are shown in Table 4-1. Considering the form factors of the equipment and that the necessity for maintaining a cg position precluded locating them as a single.group, approximately 750 cu ft is required for integrating this equipment into the payload. Structure to carry the equipment loads to the LM/Truck cruciform beams and the docking ring with its supporting structure, to perform the same function as on LM, required a volume allocation of about 100 to 200 cu ft . The total volume required for the equipment, the docking ring and support structures amounted to 850 to $950 \mathrm{cu} \mathrm{ft}$,leaving approximately 1100 to 1200 cu ft for the shelter.

Initial configurations resulting from the use of combination of simple geometric pressure shell shapes (circular arc and spherical sectors) had form factors which caused a further reduction in attainable shelter internal volumes to a range of about 600 to 800 cu ft ; a volume of 70 to 100 cu ft was allocated to provide for micrometeoroid shielding based on using a bumperbackup sheet spacing of 2 to 3 in . over a surface area of 400 cu ft .

The utilization of volume within the shelter was also examined at this point. The volumes and dimensions of internally located equipment (ECS unit, hard suits, bunks, food, etc.) as specified in the initial phase of this study are shown in Table 4-2 and account for about $250 \mathrm{ct} \mathrm{ft}$. of free volume to total shelter volume is about 0.6 to 0.7 which compares quite well with the results of previous studies.

Although the volumes and form factors of these initial configurations appeared adequate for satisfying the crew habitability and mission requirements, a primary consideration during the initial phase of the study was to provide overall shelter payload arrangements which were amenable to variations in mission requirements or constraints as defined by:

AIRESEARCH MANUFACTURING DIVISION

EXTERNAL EQUIPMENT (INITIAL PHASE OF STUDY).

EQUPMENT	$\mathrm{cm}^{\text {DIMENSIC }}$	(IN)	$\mathrm{CM}^{3}{ }^{\mathrm{VOL}}$	$\left(\mathrm{FT}^{3}\right)$		$\text { (LSS }{ }_{\text {(LBM) }}$	*COMMENTS
H_{2} Tank	167 DIA SPHERE*	(59)	1,762,000	(62. 2)	222	(490)	Tank configurations, volumes and masses changed for later phases of study as described in sections
O_{2} Tank	142 DIA SPHERE*	(58)	1,505,000	(53.1)	750	(1850)	4.2.1.1, 4.2.1.2 and 4.7.1.1
Fuel Cell Assembly FCA Collector Tank	$\begin{aligned} & 30.5 \text { DIA } \times 98.5 \\ & 30.5 \text { DIA } \times 46 \end{aligned}$	$\begin{aligned} & (12 \times 38) \\ & (12 \times 18) \end{aligned}$	$\begin{array}{r} 289,500 \\ 25,500 \end{array}$	$\left(\begin{array}{c} (10.2) \\ (.9) \end{array}\right.$	${ }^{149} .9$	$* \underset{(2)}{(328)}$	Volume allocation for 3 FCAs, but mass allocation for only two as specified by AiResearch
FCA Radiator	*		127,400	(4.5)	24.5	(54)	Area of $27 \mathrm{ft}^{2}$ and $2^{\prime \prime}$ nominal thickness specified**
ECS Radiator	*		340, 000	(12)	63.5	(140)	Area of $72 \mathrm{ft}^{\mathbf{2}}$ and $\mathbf{2}^{\prime \prime}$ nominal thickness specified**
Power Conversion	30.5x61x76.5	(12x24x30)	141,800	(5)	90.8	* (200)	Mass reduced to 25.2 kg (100) for later phases of study
Electronic Converaion	61x91.5x91.5	(24x36x36)	510,000	(18)	100	(450)	Dimensions and mass reduced to $30.5 \times 38,1 \times 61$ ($12 \times 15 \times 24$) and $45.4 \mathrm{~kg}(100)$ for later phases of study
LSSM	(See figure ${ }^{\text {3 }}$		(See figure		445	* (980)	Configuration remalned unchanged but mass increased to 626 kg (1380) for later phases of study
$\mathrm{H}_{2} \mathrm{O}$ Waste Tank	76.4 DIA SPHERE	(30.1)	235, 000	(8.3)		* (15)	Empty tank weight $]$ For later phases of stucty,
ECS Condensate Tank	47.7 DIA SPHERE	(18.8)	56,600	(2)		* (3)	Empty tank weight $\left\{\begin{array}{l}\text { integrated into bunks, } \\ \text { floor tanks and ECS }\end{array}\right.$
ECS Potable $\mathrm{H}_{2} \mathrm{O}$ Tank	70.6 DIA SPHERE	(27.8)	184,000	(6.5)		* (10)	Empty tank weight internal unit .
Theodolite and Panging Laser	*					*	As listed in Table 3-2, only set stored externally
Surveying Marker	*					*	As listed in Table 3-2
Sketch Board \& Maps	*					*	As listed in Table 3-2
Multiband Photography \& Radiometry	*					*	As listed in Table 3-2
Gravimeter	*					*	As listed in Table 3-2
Magnetometer	*					*	As listed in Table 3-2
Nuclear Measurements Package	*					*	As listed in Table 3-2
Sample Conta iners \& Hand Tools	*					*	As listed in Table 3-2
Survey ing Staff \& Extra Battery	*					*	As listed in Table 3-2
Astronomy Experiments	*					*	As listed in Table 3-2
Seismic Deep Refractors	*					* (198)	Mass increased to 204 kg (450) for later phases of study dimensions and volume same as in Table 3-2
Penetrometer	*					*	As listed in Table 3-2
Surface Electrical Package	*					*	As listed in Table 3-2
Radiometry Package	*					*	As listed in Table 3-2
10 Foot Drill	*					*	As listed in Table 3-2
Sonic Velocity Logging	*					*	As listed in Table 3-2
Electrical Induction Logging	*					*	As listed in Table 3-2
100 Foot Drill	$66 \times 46 \times 366$ 66 DIA $\times 335$ $107 \times 30 \times 91$ 76x48x25	$\begin{aligned} & (26 \times 18 \times 144) \\ & (26 \times 132) \\ & (42 \times 1 \times 36) \\ & (30 \times 18 \times 10) \end{aligned}$	$\begin{array}{r} 1,110,000 \\ 1,148,000 \\ 292,000 \\ 87,500 \end{array}$	$\left.\begin{array}{l} (39.2) \\ (40.6) \\ (10.3) \\ (3.1) \end{array}\right\}$		(200)	For later phases of study 66 dia $\times 335$ package eliminated and dimensions and volumes changed as shown in Table 3-2
Telluric Current	*					*	As listed in Table 3-2
Erosion Samples	*					*	As listed in Table 3-2
Environment Exposure Band	*					*	As listed in Table 3-2
Meteoroid Ejecta	*					*	As listed in Table 3-2
Tissue Equivalent Ion Chamber	*					*	As listed in Table 3-2
Emplaced Scientific Station	91.5 DIA $\times 76$ 51 DIA $\times 63.5$	(36×30) (20.1×25)	$\begin{aligned} & 499,000 \\ & 129,500 \end{aligned}$	$\left.\begin{array}{l} (17.6) \\ (4.7) \end{array}\right)$	136	(300)	For later phases of study changed to 3 packages with increased total volume and mass, $708,000 \mathrm{~cm}^{3}$ ($25 \mathrm{ft}^{3}$) and $188 \mathrm{~kg}(404 \mathrm{lb})$ as listed in Table $\mathbf{3 - 2}$
Satellite ESS	Not Determin		Not Deter	ined	65. 6	(145)	For later phases of study 3 Satellite ESSs required, 34.1 kg (75 lbm) each and dimensions as listed in Table 3-2

**Areas changed and radiators integrated into one unit for later phases of study

INTERNAL EQUIPMENT

- A: larger number of crewmen
- Increased staytime
- Changes in scientific payload complement
- Increased mobility

The capability of the ELS to accommodate larger crews is predominately based on the shelter volume available to satisfy the habitability and mission activities requirements of the crew. The most severe constraint on the attainable volume and resulting shelter form factors, for rigid structures, was the required integration of the LSSM or any other comparable size payload such as a lunar based astronomical observatory into the overall payload. Without this constraint, shelter volumes of approximately $1000 \mathrm{cu} f \mathrm{ft}$ are possible in which the configuration is a vertical cylinder whose sides are tangent to the SLA, and which has a composite floor and supporting structure at least 30 in . deep similarly to that shown in Reference 4. The 1000 cu ft can provide the habitability needs of 4 to 6 men, the manned delivery compatability of two LM's. For this type configuration, the expendable tankage and associated equipment would be supported in the central part of the composite structure and the experiment packages supported in the annular volume about the equipment. The necessary compromise of limiting at least one dimension of the payload components, stored in this manner, to 30 in . was considered premature for early lunar shelters in which one logistics carrier provides both habitability and scientific mission equipment. However, it would be compatible with more ambitious activities using a separate logistic landing to supply the experiment payload as with the twin LM/Truck delivery system or a new large logistic vehicle (LLV).

Extensible and inflatable shelter structures were also considered for providing larger volumes to accommodate laiger crews within the constraints of a single LM/Truck delivery.

The extensible shelter consists of concentric structurally rigid sections in which, for delivery to the lunar surface, the inner section is in a telescoped or retracted position within the main or outer section. In situ extension of the inner section provides the additional volume for the larger crews. This concept is most suited to horizontal cylindrical shelter configurations and is discussed further in Section 6.

The investigation of using inflatables led to other considerations. The volumes, form factors, and preferred peripheral locations of shelter internal equipment require the retracted volume and, therefore, the exposed surface area of the inflatable to be a large fraction of its erected volume and surface. Therefore, from the viewpoint of reduced surface area exposed to the micrometeoroid environment during the quiescent period, one of the potential benefits of using inflatables is achieved only to a minor degree. The possibility of mitigating the above consideration by prearranging the equipment into a compact grouping or storing it externally to the contracted shelter was eliminated because the amount of in situ crew activity to bring the shelter into operational status was considered too severe for an early lunar shelter. Docking ring and outboard equipment supporting structures necessary
with an inflatable structure would impose larger weight and volume penalties than ones which are integrated into a shelter structure capable of taking concentrated loads. The primary advantages of inflatables are exhibited when the ratio of expanded volume to available storage volume is high, e.g., 5/1, and when wall weight is only a function of self supporting strength and internal pressure can be used to maintain the expanded configuration. Neither of these conditions exist in this study. Considering that the requirements for as many as 6 crewmen can be satisfied with a $1000 \mathrm{cu} \mathrm{ft} \mathrm{shelter}$, available to expanded volume would be only about l.5. Also the wall weight to satisfy micrometeoroid protection requirements exceeds the requirements to make it self supporting without relying on internal pressurization.

Based on the preceding considerations and the fact that volumes attainable with rigid shelters appeared suitable for 3-man crews, or up to 6-man crews with a rigid extensible section, the investigation of inflatables for the shelter was discontinued.

The applicability of inflatable or deployable air locks in conjunction with a rigid shelter structure was similarly reviewed and, based on the minimal volume gains (internal and external) compared to the attendant decrease in reliability and increase in operational complexity, they were eliminated for use in an early lunar shelter.

However, the use of inflatables to satisfy emergency or temporary habitability requirements in conjunction with the shelter payload does appear attractive as illustrated by the following description of the physical characteristics of an inflatable studied by Goodyear Aerospace Corporation in connection with increasing the habitability of the LM vehicle (Reference 5).

The inflated configuration consists of a 400 cu ft cylindrical section approximately 7 ft dia by 13 ft long and a $100 \mathrm{cu} \mathrm{ft} \mathrm{air} \mathrm{lock} \mathrm{section} \mathrm{approxi-}$ mately 7 ft dia by 4 ft long; the two sections are connected by the inboard air lock door frame edge member. The weights of the cylindrical and air lock sections are 220 lb and 100 lb respectively. The corresponding unit structural weight is approximately $0.7 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$ for the pressure structure, internal pressure bladder, 2 in. compressible foam micrometeoroid barrier and an outer cover for the thermal coating. A full scale functional model was packaged into a 5 by 2 by 6 ft envelope; this size package could be stored in the space occupied by the LSSM or with minor repackaging could be stored in the shelter and removed upon shelter activation.

Increased staytime is primarily equatable to increased expendable requirements. An exoskeletal structural support approach for the expendable tankage and LSSM makes the substitution of tankage for the LSSM a comparatively minor modification with little influence on the shelter configuration or its primary structural arrangement. This structural approach also allows considerable flexibility to accommodate changes in sizes and shapes of the scientific equipment payload complement with minor influence on the shelter.

For continuous or intermittent occupancy of the ELS for periods as long as one year by sequenced crews, expendables could be supplied by a transfer operation from a separate logistics payload with the aid of a mobility system. This concept is currently under study for the AAP in which the Augmented LM is supplied by a logistic unmanned version of LM, called the Lunar Payload Module, carrying expendables and scientific payload.

If the shelter remains fixed at its landed site, the area of examination is limited by the range of the LSSM. A shelter which is transportable on the lunar surface would allow a series of sites to be examined or reduce the LSSMShelter travel time for a particular site of interest which did not coincide with the landed site.

To satisfy this mode of surface operation the shelter can be made as a powered trailer using the LSSM to guide it to particular sites. This concept is discussed further in Section 6.

During the development of the shelter configurations and the subsequent conceptual design, several previous studies of fixed and mobile shelters for extended durations were reviewed (References 4 through 7) to ascertain the applicability of their results to this study. It was found that the requirements and constraints of these preceding studies were sufficiently different from those of the current study to preclude any gross applicability of their results as solutions to the problems of this study. However, discrete aspects such as those pertaining to crew habitability, micrometeoroid protection, and payload deployment did provide points of departure or comparison for the approaches considered in this study.

SELECTION OF CANDIDATE CONFIGURATIONS

Approximately 10 preliminary concepts of shelter configurations were generated and reviewed. A comparison of these concepts led to the selection of two baseline configurations which satisfied the initial shelter volume goal of exceeding 500 cu ft . The were Configuration 3 -Horizontal Cylinder (567 cu ft) as shown in Figure 4-I and Configuration 4-Vertical Cylinder as shown in Figure 4-2; the corresponding outboard profiles are shown in Figures 4-3 and $4-4$ respectively. It is to be noted that in both profiles, the 18 by 26 by 144 in. size envelope of one of the $100-\mathrm{ft}$ drill packages, as specified at this phase of the study, and the LSSM were most influential in the arrangement of the overall shelter payload and the attainable shelter volume.

As a result of an increase in the volume goal to 700 cu ft and subsequent changes and allowable variations in the sizes of the 100-ft drill packages, four additional configurations based on the horizontal and vertical cylinder concepts were generated. These four configurations and the two baseline configurations are referred to as the Final Series of Shelter Configurations and are illustrated-in-Figure 4-5.

Configuration $3 B$ was selected over the other horizontal cylinder shelters since its right circular pressure shell is structurally simpler and its volume is greater than the 700 cu ft goal.

AIRESEARCH MANUFACTURING DIVIIION

Figure 4-1. Baseline Configuration 3 Horizontal Cylinder

* METEOROID BUMPER NOT SHOWN 2-3 IN. THICK
f
i
i

Figure 4-2. Baseline Configuration 4 Vertical Cylinder

view A-A
. Shelter
SHELTER AIRLOC
. H_{2} TANK (2)
ELS CONDENSATE TANK
ELECTRONTC EQUIP. STORAGE
. WASTE STORAGE TANK (2)
FCA COLLECTOR TANK (H2)
. FCA UNIT (2)
. ${ }^{\mathrm{H} 2 \mathrm{O} \text { TANK }}$ POWER CONVERSION EQUIP. STORAGB
POWER CONVERSTON EQUIP. STORA
100 FT. DRILL PACKAGE
. 100 FT. DRILL PACKAGE (12 ')
100 FT. DRILLI PACKAGE (2.5')
ECS RADIATOR
FCA RADIATOR
FCA RADIATOR
WORK PLIATFORM STORAGB
ESS MISSION EQUIP. STORAGE (2)
RCS JETS
STAR TRACKE
LEG IADDER (2)
DOCKING Forr
DCKING TARC
CREW/GHEITER EGRESS MECH. STORAGE
EQUIP. UNLLOADING MECH. STORAGE
CREWTPHELTER EGRESS MECH. STORAGE
SLIA. UNLOADING MECH. STORAGE
SLA
SM ENGIIVE
S-IV B
29.
3M ENGINE
30.
3-IV
SGIRESS PLATFORM
32. LISSM
33. He TANK (Truck)

Page Intentionally Left Blank

Page Intentionally Left Blank

| CONFIGURATION | TOTAL VOL. FT |
| ---: | :---: | :---: |

Figure 4-5. Final Series of Shelter Configurations

The comparison of the vertical cylinder shelters resulted in the selection of Configuration 4 even though the volume of 4 A exceeds the volume goal of 700 sq ft and 4 does not. This seeming contradiction to objectives was based on the following considerations. For Configuration 4A, a greater amount of equipment preferably stowed externally had to be placed inside the shelter, and the form factor of the volume available in the second lobe limits its utilization to a small fraction of the geometric volume.

Although the volume goal was $700 \mathrm{cu} \mathrm{ft}$, 4 could satisfy the requirements of a 3-man crew; therefore, both Configurations $3 B$ and 4 were studied further to allow a more quantitative comparison between vertical and horizontal cylinder configurations.

SELECTION OF RECOMMENDED CONFIGURATION

To provide a basis for a comparative evaluation of the two candidate shelter configurations and the subsequent selection of a recommended configuration, the following were developed for the two candidate shelter payload configurations:

- Outboard profiles
- Inboard profiles
- Structural arrangements
- Mass summaries

The shelter payload can be considered to consist of four groupings:
a. The shelter and all internal equipment and furnishings
b. Externally located equipment and consumables which are directly related to shelter operation and are connected to the shelter by electrical and fluid lines
c. Externally located equipment which are related to extra-shelter activities (ESA) such as scientific equipment packages and the LSSM
d. Support or handling provisions which are not required for initial occupancy of the shelter such as temporary access platforms and unloading devices and small equipment such as, sample containers, and surveying markers

Outboard Profiles

In addition to satisfying the requirements, constraints and goals noted in Section 3 and previously in Section 4, the following ground rules were applied in the development of outboard profiles for Configuration 3B-Horizontal Cylinder, and Configuration 4-Vertical Cylinder.

AIRESEARCH MANUFACTURING DIVIIION

Items of group (b) such as cryogenic tankage and fuel cell assemblies should be positionally fixed to the shelter whether or not the shelter is to be moved relative to the LM/Truck and functionally grouped to minimize electrical and fluid line lengths.

Items of group: (c) should be arranged to localize unloading requirements and the provisions for unloading should also be independent of the "as landed" attitude of the LM/Truck or the final position of the shelter payload relative to the LM/Truck.

Items of group (d) may be stored in the shelter.
Initial access to the airlock outboard door, entry, and pressurized óccupancy of the shelter should not require relocation of stored equipment.

Minimum use of LM/Truck sides should be made for mounting stored equipment or supplies.

Equipment of all groupings should be located to help maintain overall cg location limitations.

1. Configuration 3B Outboard Profile

The outboard profile for Configuration $3 B$ is shown in Figure 4-6. The pressurized shelter is an 8.l-ft dia cylinder with $7-\mathrm{ft}$ radius spherical sector end domes. Its overall length is 16 ft , and it is located symmetrically with respect to the Y and Z axes of the LM/Truck with the airlock (shelier forward end) facing in the $-Z$ direction. A docking ring and tunnel for accepting the Apollo Command Module is symmetrically located at the top center of the cylinder. The shelter end domes are tangent to the payload envelope, and therefore in the primary payload envelope only the space adjacent to the sides of the shelter is available for equipment storage.

The cryogenics are stored in two separate tanks, the H_{2} tank above and slightly inboard of the O_{2} tank, located symmetrically with respect to the Y axis on the $-Y$ side of the shelter. The tanks have an overall wall thickness of approximately 4 in . The O_{2} tank is spherical and has an outside dia of 52 in . The H_{2} tank is nearly spherical with a $\mathrm{L} / \mathrm{D}=\mathrm{l} .1$ and an outside dia of 55 in . The combined mass of the cryogenic fluids and tankage is about 2100 lb.

The fuel cell assemblies (FCA), power conversion and electronic equipments are grouped together aft of the cryogenic tanks on the $-Y$ side of the shelter. Their combined mass is approximately 480 lb based on using two FCA's; the third FCA is shown to satisfy the requirement that space, but not mass, is allocated for 3 FCA's.

The LSSM, in a contracted configuration, is located symmetrically relative to the Y axis on the $+Y$ side of the shelter. It is positioned with the driving station facing radially outward and downward such that its longitudinal axis is at an angle of 5 deg with respect to the LM/Truck XZ plane. It was assumed

Page Intentionally Left Blank

Page Intentionally Left Blank

that in the contracted configuration its suspension system is locked out and the entire vehicle can be considered a rigid body; its mass in this storage mode is 1380 lb .

The environmental control and fuel cell radiators are located in a horizontal plane approximately tangent to the top of the cylinder on the $-z$ and $+Z$ sides of the docking tunnel. The protrusions of the LH_{2} tank and the LSSM above the primary space envelope and the docking ring structure occupied sufficient area to require a folding section in the aft radiator which is deployed after the shelter is occupied. The radiators have a combined surface area of 117 sq ft and a total mass of 235 lb .

The majority of the scientific equipment (Table 3-2) to be stored external to the shelter is located in several clusters within the primary payload envelope. Since all the equipment packages are identified in Figure 4-6 only the major packages, from volumetric or mass viewpoints, will be mentioned in the following. The Emplaced Scientific Station packages, having a mass of approximately 414 lb , are located forward of the cryogenic tanks adjacent to the -Y side of the airlock end of the shelter.

The Seismic Deep Refraction package and one of the Theodolite and Ranging Laser packages, with a combined mass of approximately 500 lb , are located on the $+Y$ side of the airlock end of the shelter forward of the LSSM. The three Satellite ESS packages, with a mass of approximately 225 lb , are located behind the LSSM and directly over the LM/Truck beam. The Multiband Photography and Radiometry package and five smaller mass packages are located aft of the LSSM and adjacent to the shelter. This cluster of equipment has a combined mass of about 210 lb .

As previously stated, there were several changes in the sizes, weights, and total number of packages comprising the 100 ft drill assembly, some of which were initiated to allow increased flexibility of storage location in the primary payload envelope. The more significant changes were the elimination of the $26-i n .-d i a$ by $132-i n .-l o n g$ package and the reduction of the 18- by 26 - by $144-\mathrm{in}$. package to 9 by 30 by 144 in . with a mass of 150 lb .

Since this latter package contained the drill rod extensions, it could be reconfigured into two or three packages provided the aggregate cross-sectional area remained in the same, the $144-i n$. length being retained to minimize the number of rod joints. For this configuration the drill rod extensions are contained in two 9- by 15- by 144-in, 75-lb packages. They are located longitudinally along both sides of the shelter over the Y axis LM/Truck beams, their lengths positioned symmetrically with respect to the Y axis.

The remaining large ($12-$ by 36 - by $42-\mathrm{in}$.) package of the $100-\mathrm{ft}$ drill assembly is located inside the shelter.

Other scientific equipment packages which have small cross-sectional areas and relatively long lengths such as the $10-\mathrm{ft}$ drill and surveying staff are located above the $100-\mathrm{ft}$ drill rod extensions.

The numerous equipment packages which are relatively small in size (0.02 to $0.6 \mathrm{cu} \mathrm{ft)} \mathrm{and} \mathrm{mass} \mathrm{(} 1$ to 34 lb) can be located adjacent to some of the large equipment packages to allow storing all the scientific equipment in the primary envelope. Alternatives are to store them in cabinets in the shelter or to group them in an equipment box which is mounted in the shelter or on an LM/Truck -Y -Z face, as shown in Figure 4-6. The combined volumes and masses of the packages in the box are approximately 2 cu ft and 125 lb .

Auxiliary equipment, such as for unloading the scientific equipment, may be stored above the $100-\mathrm{ft}$ drill rod extension packages or inside the shelter.

2. Configuration 4 Outboard Profile

The outboard profile for Configuration 4 is shown in Figure 4-7. The pressurized shelter consists of two parallel, intersecting circular cylinders 74 in. high with spherical radii roof domes and a common flat floor. The main cylinder is 117 in . in dia and has a 108 -in. spherical radius roof dome. It is intersected by the airlock cylinder, or lobe, which has a dia of 72 in . and a 97.6 in. spherical radius roof dome. The plane of intersection is located 47.3 in . from the center of the main cylinder.

The shelter main cylinder is symmetrically located relative to the LM/ Truck Y and Z axes with the common diametral axes of the cylinders aligned along the Y axis, the airlock cylinder facing in the $-Z$ direction.

A docking ring and tunnel for accepting the Apollo Command Module is located at the top center of the main cylinder. Only the airlock end of the shelter is approximately tangent to the payload envelope, and therefore an annular volume extending approximately 290 deg about the main cylinder is available for equipment storage.

The cryogenics are stored in three tanks aligned side by side along the $+Y$ periphery of the shelter, the O_{2} tank centered between the two H_{2} tanks. All the tanks are cylindrical with hemispherical domes, have a L/D of approximately 2 , an outside dia of 38 in. , and a nominal wall thickness of about 4 in . The combined mass of the fluids and tankage is about 2200 lb.

Examination of asymmetrically located shelters, with respect to the Truck Y and Z axes, to allow the use of spherical cryogenic tanks or at least ones with significantly more favorable length to diameter ratios showed that this could only be accomplished with significantly smaller useful volume vertical cylinder shelters.

The fuel cell assemblies (FCA), power conversion and electronic equipments are grouped together approximately midway between the $+Z$ and $+Y$ axis near the intersection of the airlock lobe and main cylinder. As in Configuration 3B, their combined mass is approximately 480 lb based on using two FCA's; the third FCA is shown to satisfy the requirement that space, but not mass, is allocated for 3 FCA's.
airesearch manufacturing division

1. Sheiter atriock SHELTER DOCKING POR
${ }^{\text {FCCA RADIAAOR }}$

- ELECTRDONIC EQUTPMENT

POWER CONVERSION EQUIPMENT
. RCS JETS
. IA_{2} tank
i. LH2 TANK
12. SKETCHBOARD \& MAPS
. SURVEY ING STAFF
4. SURVEying markers $\left\{\begin{array}{l}\text { A } \\ B\end{array}\right.$
15. 100 FOOT DRLIL $\left\{\begin{array}{l}A-12 \times 15 \times 72 \\ B-14 \times 26 \times 22 \\ C-12 \times 36 \times 42 \\ D-6 \text { TA. } \times 12\end{array}\right.$
16. 10 FOOT DRILI
17. RTG UNITT
19. LEG LADDERS
20. STAR TRACKER
21.
DOCKTNG TARGE
21. DOCKING TARGET
23. SEISMIC DEEP REFRACTION
25. FCA COLlector tank
26. sCA COLLECTER TANK
27. S-IVB
28. SLA
29. SM ENGINE
30. ESS $\left\{\begin{array}{l}A-12 \times 18 \times 24 \\ B-24 \times 24 \times 24\end{array}\right.$

ESS $\left\{\begin{array}{l}A-24 \times 24 \times 24 \\ C-24 D . \times 24 \\ C=2\end{array}\right.$ (RTG)
31. SATELLITE ESS $\left\{\begin{array}{l}A-9 \times 13 \times 18 \\ B-9 \times 13 \times 18 \\ C-9 \times 13 \times 18\end{array}\right.$
. MULTIBAND PhoTOGRAPHY \& RADIONETRY EQUIP 'I RANGIING LASER
THEODOLITE
. THEDDOLOM EXPERIMENTS
36. SAMPLE CONTAINERS \& HAND TOOLS
37. tellurric currents $\left\{\begin{array}{l}A \\ B\end{array}\right.$

Figure 4-7. Configuration 4 Vertica. Cylinder Outboard Profile

Page Intentionally Left Blank

The LSSM, in a contracted configuration, is located symmetrically relative to the Z axis on the $+Y$ side of the shelter. It is positioned with the driving station facing radially outward and downward such that its longitudinal axis is at an angle of 10 deg with respect to the LM/Truck XZ plane. As in Configuration 3B, it was assumed that the suspension system was locked out, and the entire vehicle was considered a rigid body; its storage mode mass is 1380 lb .

The environmental control and fuel cell radiators are located in a horizontal plane approximately tangent to the top of the main cylinder. Since the cryogenic tanks do not protrude above the radiator level, as the H_{2} tank does in Configuration 38 , the folding section of the radiator was replaced by a permanent section of equivalent area located over the cryogenic tanks.

The radiators have approximately the same combined area and mass as for Configuration 3 B , namely 117 sq ft and 235 lb .

The majority of the scientific equipment designated to be stored external to the shelter is located on both sides of the LSSM and in a large grouping adjacent to the rear of the shelter asymmetrically over the $+Z$ axis LM/Truck beams.

The Seismic Deep Refraction package and the Erosion Sample package, with a combined mass of 460 lb , are located on the $+Y$ side of the airlock lobe, forward of the LSSM.

To accommodate the external storage of the $100-\mathrm{ft}$ drill rod extensions, in this configuration, their minimum allowable length was reduced to 72 in .; the required total cross-sectional area for storage commensurately increased to 540 sq in .

The packages containing the $100-\mathrm{ft}$ drill extensions, surveying markers, and surveying staff are located aft of the LSSM. These packages have a total mass of 200 lb .

The lo-ft drill package, because of its $130-i n$. overall length is located in a horizontal attitude between the LSSM and the shelter. It is above the Seismic Deep Refraction package and at an angle to the Z axis to clear the 100-ft drill rod extensions package.

The equipment grouping aft of the shelter over the $+Z$ LM/Truck cruciform beam has a volume of approximately 60 cu ft and contains approximately 900 lb of scientific equipment. The locations of this equipment to help maintain the overall cg envelope required the grouping to be offset six in. from the Z axis in the Y direction.

The remaining small equipment packages, 2 cu ft and 125 lb , are located in a box on the LM/Truck $-Z, Y$ face as was done in Configuration 3B.

Auxiliary equipment, such as for unloading the scientific equipment, may be stored vertically adjacent to either side of the airlock lobe or inside the shelter.

AIRESEARCH MANUFACTURING DIVISION

Inboard Profiles

The interior of the shelter must satisfy the following general requirements:

- Ingress/egress via an airlock
- Three crewmen on the same work/rest cycle
- Duty stations for mission operations
- Stowage of equipment such as environmental control unit, food preparation, crew garments and space suits

In addition to the requirements and constraints noted in Section 3 and the above paragraph, the following ground rules were applied in the development of the inboard profile of Configurations $3 B$ and 4:

- Accommodate 5 to 95 percentile men
- Minimum 2-man airlock volume of 80 cu ft exclusive of any installed equipment
- Minimum airlock head room of 75 in. and nominal floor area of approximately 10 sq ft
- Airlock door opening approximately 30 by 60 in. or equivalent for nonrectangular shape
- Sealing of airlock doors aided by internal pressure in the normal mode of operation
- Shelter free floor area with a minimum head room of 75 in. and aisle width of approximately 44 in. to accommodate pressure suit donning and access to the airlock
- Sleeping accommodations consisting of three bunks with minimum dimensions of 24 by 75 in. and 24 in . clear height above bunks to allow full length and 360 deg rotation sleeping

1. Configuration 3B Inboard Profile

The inboard profile for Configuration $3 B$ is shown in Figure 4-8.
The interior of the shelter is functionally divided along its length into three areas:

> Airlock

Work/Living
Sleep-Rest/Radiation Refuge

AIRESEARCH MANUFACTURING DIVISION

Sodar filare cran shitiontic
5r.

I. AIRLOCK 1. Door - External Sliding 3. Window Interna - Hard Suit (3) 6. Suit Checking Station	
II. SHELTER a. WORK AREA (STATION)	
12. T.v. canera	

(4)
20. Console

piss changing areat
47.
Priss (6)

 53. Ere Pacaege, Fran

Page Intentionally Left Blank

a. Airlock--The airlock has a volume of approximately 120 cu ft and is separated from the adjacent work/living area by a flat bulkhead located a centerline distance of 37 in . from the forward end-dome of the shelter. It can be used simultaneously by 2 suited men, accommodates the storage of 3 hard suits and contains the waste disposal system. It has approximately II sq ft of free floor area, 90 percent of which has a headroom of at least 75 in. Also, it can accommodate a hammock to provide a sleep-rest area isolated from the rest of the shelter.

It has a 30- by 64-in. inboard door, with semicircular ends, which is hinged to open into the work/living area and a 42- by $57-\mathrm{in}$. elliptical overboard door which slides laterally along the inner face of the forward end dome to allow maximum utilization of the airlock volume.
b. Work/Living--The work/living area is approximately 9-ft long. It contains the ECS unit, PLSS batteries, six PLSS backpacks and three soft suits stored along the $+Y$ side; a table area is over the PLSS units. Internally stored scientific equipment storage shelves, crew equipment cabinets, status monitoring and communication consoles, and work tables are arranged along the -Y side. The arrangement shown provides a rectangular floor area of over 47 sq ft and about 35 sq ft of table surface, of which about $1 / 3$ is foldable. Crew chairs or stools can be freely moved about the floor area, and crewmen seated at work stations do not inhibit passage of another man to the airlock or sleep-rest areas.

The floor has removable sections which allow access to storage space beneath the floor level and can have integral tanks for storage of potable water or waste liquids.

A 32-in.-dia, single-lever operated, quick-opening hatch for emergency use is located in the docking tunnel over the central aisle of the work/living area. This hatch also allows for in-flight manned access to the shelter for checkout.
c. Sleep-Rest/Radiation Refuge--The sleep-rest/radiation refuge area in its normal arrangement as a sleep area begins at a centerline distance of approximately 44 in . forward of the shelter aft end dome and occupies a volume of about 165 cu ft . It has three bunks which in normal use are tiered and occupy $80 \mathrm{cu} \mathrm{ft}$. additional work/living area by pivoting the bunks into a vertical plane or repositioning them vertically on end.

Two 6-cu-ftilockers, initially containing 166 lb of food and later used for waste storage, are located at the ends of the bunks.

During staytime the 150 LIOH cartridge, provided for CO_{2} removal in the backpacks and shelter, are stored in cored polyethylene blankets behind the bunks on the inside face of the end dome. This arrangement occupies 50 cu ft and weighs 600 lb .
airesearch manufacturing division

At launch, the cartridges are located on the shelter floor, as shown in Figure 4-9, to lower the payload cg and reduce the loading on the end dome during the high-g phases of launch through landing.

The normal sleep-rest arrangement of this area is readily convertible into a radiation refuge suitable for 3 suited crewmen as shown in Figure 4-8. The LiOH cartridges in polyethylene blankets and the food/waste lockers form three sides of the refuge. The bunks, which are constructed as compartmented flat tanks and filled with potable water or waste liquids, and the PLSS units are used to form the fourth side and roof of the refuge.

Polyethylene water blankets and strips are used where equipment and supplies do not provide sufficient shielding and to fill interstices between the equipment and supplies. The details of the protection afforded by this type of arrangement and the weight penalties associated with it are covered later in this section.

2. Configuration 4 Inboard Profile

The inboard profile for Configuration 4 is shown in Figure 4-10.
The interior of this shelter, as in Configuration 3B, also is functionally divided into three areas:

Airlock
Work/Living
Sleep-Rest/Radiation Refuge

a. Airlock--The airlock has a volume of approximately 120 cu ft and is separated from the adjacent work/living area by a flat bulkhead located a centerline distance of 45 in . from the forward end of the airlock. The airlock can be used simultaneously by 2 suited men, accommodates the storage of 3 hard suits, contains a waste disposal system, and has a suit checking station which is mounted on the bulkhead. It has a free floor area of 17 sq ft and headroom of at least 75 in . over 55 percent of the floor area.

The airlock has a 34 - by $60-\mathrm{in}$. rectangular overboard door which slides circumferentially along the inner face of the airlock wall to minimize encroachment on the airlock volume, and a 42-by $56-i n$. elliptical inboard door hinged to open into the work/living area.
b. Work/Living--The work/living area is approximately 5 ft long. On the $+Y$ side it contains the ECS unit mounted on the floor and occupying an approximately chordal volume which is 28 in . high, has a maximum chord depth of 18 in . and extends the length of the work/living area. A work table surface, with storage compartments under it, is located on top of the ECS unit. The ECS unit is located in the $+Y$ side of the shelter to help maintain the required cg envelope. Internally stored scientific equipment shelves, crew equipment cabinets, status monitoring consoles, and work tables are arranged along the $-Y$ side of the shelter. The three soft suits are suspended from the roof dome for drying and storage.

1. WASTE MANAGEMENT SYSTEM
2. ECS CONSOLE
3. PLSS BACKPACKS (6)
4. PORTABLE O_{2} SYSTEM
5. CHAIRS
6. BUNKS
7. L_{1} OH PACKAGE (3) (SEE. DETAIL D)
8. LIOH PACKAGE (18) (SEE DFTAIL E)
9. 100 FT. DRILL RADIATORS
10. HARD SUITS (3)

\square

DETAIL D (1/10 SCALE) $\mathrm{L}_{1} \mathrm{OH}$ PACKAGE
DETAIL C ($1 / 10$ SCALE)
$\mathrm{L}_{1} \mathrm{OH}$ PACKAGE

Figure 4-9. Configuration 3B Horizontal Cylinder Profile-Launck Arrargement

Page Intentionally Left Blank

Page Intentionally Left Blank

The work/living area equipment arrangement shown provides an unobstructed approximately rectangular floor area of about 25 sq ft and about 23 sq ft of work table surface, of which about 40 percent is foldable. Crewmen seated at work stations do not inhibit passage of another man to the airlock or sleeprest areas.

As in Configuration 3B; a 32-in.-/dia, single-lever operated, quickopening hatch for emergency use is located in the docking tunnel in the center of the roof dome. This hatch also allows for in-flight manned access to the shelter for checkout purposes.

3. Sleep-Rest/Radiation Refuge

The sleep-rest/radiation refuge area occupies the aft section of the shelter in the form of a chordal volume occupying approximately 250 cu ft which extends from the floor to the roof dome, has a maximum chord depth of 44 in . and chord length of 114 in . It has three bunks which in normal use are tiered and aligned along a chord parallel to the Y axis. As in Configuration $3 B$, the bunks can be pivoted or repositioned vertically on end to make the $80 \mathrm{ct} \mathrm{ft} \mathrm{they} \mathrm{normally} \mathrm{occupy} \mathrm{available} \mathrm{for} \mathrm{use} \mathrm{as} \mathrm{addi-}$ tional work/living space.

A locker, initially containing 166 lb of food and later used for waste storage, 6 PLSS units, and PLSS batteries are located at the ends of the bunks.

During stay time the 150 LiOH cartridges, provided for CO_{2} removal in the backpacks and shelter, are stored in cored polyethylene blankets behind the bunks on the inside face of the shelter pressure wall. Although Figure 4-10 shows all the cartridges uniformally distributed in two layers for use as radiation protection, which is discussed later; the cartridges on both vertical ends of the blanket can be relocated to form 3 layers in the middle section of the blanket and thereby eliminate the contouring of the bunk corners.

At launch, the cartridges are located on the floor, similarly as shown for Configuration $3 B$, to lower the cg and reduce the loading on the shelter wall during the high-g phases of launch through landing.

The normal sleep-rest arrangement for this shelter configuration is also readily convertible into a radiation refuge in the same way as used for Configuration 3B. The LiOH cartridges in polyethylene blankets and the PLSS units form three sides of the refuge, and water filled compartmented bunks form the fourth side and a partial roof for the refuge. Polyethylene water blankets and strips are used to complete the roof, fill openings between equipment and supplement low density areas of the PLSS units and bunk. interfaces.

The enclosed volume accommodates 3 suited crewmen as shown in Figure 4-10. The protection provided by this type of arrangement and the attendent weight penalties are similar to those of Configuration $3 B$ which are covered later in this section.

Structural Arrangements

The structural criteria and loads which were used in the development of the structural arrangements of the shelters and outboard equipment supports are described in Section 4, "Structural Criteria and Loads."

To take advantage of the load carrying capabilities of the LM/Truck cruciform beams for supporting outboard equipment and al so have the supporting structures of the outboard equipment amenable to shelter deployment (e.g., leveling of the shelter, orienting it azimuthally or unloading it to the lunar surface), the following ground rules were applied to the development of the structural arrangements:

- For equípment located directly over or in close proximity to the LM/Truck beams, the supporting structures to carry the flight and landing loads will be connected directly to the LM/Truck cruciform beams.
- The shelter structure may be used to react Y and Z axis flight and landing loads on equipment since it can provide this capability for only a small weight increment for the fittings.
- Under postlanding load conditions, the shelter structure will be capable of supporting all externally located equipment and consumables which are directly related to shelter operation and connected to it by electrical or fluid lines.
- The supporting structures for the above equipment will have elements to provide the connections to the shelter and provisions for disconnecting the structural ties to the Truck beams.

1. Configuration 38 Structural Arrangements

The shelter structural arrangement for Configuration $3 B$ is shown in Figure 4-11.

The pressure shell consists of a stiffened thin skin cylindrical shell 97 in . in dia by 162 in . long with 7 -ft radius spherical sector end domes; the resulting overall length is 16 ft .

A 35-in.-dia docking ring and tunnel are symmetrically located above the center of the cylindrical shell. The ring is structurally supported by four trusses which are connected to the stiffened shell at the intersections of two upper longerons and the two main frames.

Internally, the shelter has an aluminum honeycomb flat bulkhead located 37 in. from the forward end dome, separating the airlock from the work/living area. An aluminum honeycomb non-pressurized floor, located at a chord height of 12 in., extends throughout the shelter.
airesearch manufacturing division

TRUE VIEW THRU
SECTION A-A

SECTION D-D

Figure 4-11. Configuration 3B Horizontal Cylinder Shelter Structural Arrangement

Page Intentionally Left Blank

The shelter structure is connected to the LM/Truck by four fittings tying the intersections of the two main frames and lower longerons to the upper caps of the four main beams at their intersection forming the cruciform.
'a. Stiffened Cylindrical Shell--Two methods of providing the structural connection of frames and longerons to the cylindrical shell are illustrated in Figure 4-11, the stringer-skin and the machined-skin. The stringer-skin. 'method utilizes circumferential and longitudinal stiffening elements which are welded or riveted to preformed thin sheet skins to produce the shear panels. The required built-up main^frames and longerons are, in turn, welded or mechanically fastened to the elements which form the boundaries of the shear panels.

In the machined-skin method, the circumferential and longitudinal stiffening elements are integral with the skin as a result of milling-out the shear. panels from a.plate and therefore do not require penetrations of the thin sheet skins or cause changes in its properties. The machined peripheral stiffeners are nominally about 0.10 in . thick and 0.75 in . high to accommodate welding or mechanically fastening built-up longerons and frames.

The general arrangement of the stiffened cylindrical shell is the same for both of the above methods of providing structural connections to the shell; a discussion of the various stiffened skin approaches which were considered is given later in Section 4.

The nominal thickness of the skin is 0.030 in . for both of the above methods of providing structural connections to the skin. It is based on the backup sheet requirements for micrometeóroid protection and is more than sufficient for the hoop tension caused by the 11.6 psi burst pressure requirement. To accommodate local discontinuities where frames, bulkhead, and end domes are joined to the skin, its thickness is increased to about 0.065 in. to 0.090 in ., as required by the joining member, for about 2 in . on each side of the discontinuity. In most cases this 'land', or thicker portion of the shell, also serves as the inner cap of the I or box beam cross-section of the structural frames.

The cylindrical shell acts as the prime shear carrying member for inertial loading. The shear panels are approximately 10 to 12 in . wide by 27 in . long. The circumferential and longitudinal stiffening elements extending radially outward around the shear panels also provide the locations for fastening the standoffs which are used for supporting the micrometeoroid bumper panels.

Eight main longerons are spaced at approximately 45 deg intervals about the periphery of the cylindrical shell. These longerons plus the effective skin in tension represent the beam bending strength of the stiffened shell for inertial loads. The nominal individual longeron area required is 0.114 sq in. which is increased to about $0.18 \mathrm{sq} \mathrm{in}$. such as at the docking ring truss connections, cryogenic tank supports and where the shelter is connected to the cruciform beams.

The stiffened shell has two external main frames which, in conjunction with the longerons, carry the loads from the docking ring, external equipment such as the cryogenic tanks and LSSM, and the shelter to the LM/Truck. They are 54 in . apart and symmetrically located to match the vertical edge members of the LM/Truck cruciform beams. The two main frames are built up externally and may have either an I or box cross-section 6 in . deep with a section modulus of $3 \mathrm{cu} . i n$. as shown in Sections $\mathrm{D}-\mathrm{D}$ or $\mathrm{E}-\mathrm{E}$ of Figure 4-11.

Internally, there are three light convenience frames to carry the vertical and radial inertia loads on wall mounted internal equipment. Two of the convenience frames are coplanar and built off the main frames; the third is located 27 in. aft of the rear main frame is therefore midway between the main frame and the end dome compression ring. It may be welded or bonded to the skin.

Internally located longitudinal stiffeners, which are bonded to the skin, are used to carry the relatively minor longitudinal loads from equipments which are located too high above the floor for efficient attachment to it.
b. End Domes and Airlock Bulkhead--The micrometeoroid protection backup sheet thickness of 0.030 in . is sufficient for the tension loaded membrane skins of the end domes. A compression ring as shown in Section C-C of Figure 4-Il is used at the dome/cylinder intersection.

The forward end dome has a 42 by 57 in . elliptical opening for the airlock door. It is horizontally offset from the center of the bulkhead by 16 in . This large asymmetrically located opening has a framing ring to resist the membrane tension loads in hoop tension. A framing ring which also provides the surface for supporting the seal for the airlock door is shown in Section A-A of Figure 4-11.

External stiffeners, welded or bonded to the skins of both end domes, provide the locations for fastening the standoffs which are used for supporting the micrometeoroid bumper panels.

The inboard bulkhead, located 37 in . from the forward end-dome, has a 30 by 64 in. cutout with semicircular ends which is horizontally offset from the center of the bulkhead by 8 in . It is constructed of flat honeycomb aluminum approximately 6 in . deep with a 3 to $4 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$ core and tapered face sheets which have a maximum thickness of 0.040 in . The bulkhead is attached to the cylindrical skin by means of a peripheral edge angle welded or mechanically fastened to a land on the skin; in the latter case a sealant is used to provide pressure integrity.
c. Shelter floor--The shelter floor, in addition to being a convenience floor for the crew, also reacts the loads from consoles and equipment located on the floor during flight and landing as well as during stay time. The floor consists of flat honeycomb aluminum panels approximately 2 in. deep with 2 lb/ cu ft cores and face sheets 0.020 in . thick. The panels are approximately 5 ft wide and have lengths to match the spacings between the frames, bulkhead and end-dome compression rings. The panels are supported by and mechanically fastened to the frames, end-dome compression rings,airlock bulkhead, and to
shear ties attached to the cylindrical shell. The floor panels have removable sections to allow rapid access to the space beneath the floor level; also, they can have integral tanks below the lower face for storage of potable water or waste liquids.
d. Docking Ring and Tunnel--To accommodate the docking tunnel and inflight hatch a thickened skin, increasing from 0.030 in . to approximately 0.090 in . over a radial distance of about $5 \mathrm{in} .$, is used in addition to an edge member which provides the sealing surface. The tunnel section may be welded or mechanically fastened to the cylindrical shell skin outboard of the hatch sealing surface edge member. If mechanically fastened, sealant would be used to provide the pressure integrity for the docked checkout phase of the flight.

The docking ring is supported by four trusses made from 3 in. dia by 0.063 in . wall thickness aluminum tubing. The trusses are connected to the docking ring at 4 equidistant places about its periphery and to the stiffened cylindrical shell at the intersections of the two main frames and two of the upper main longerons which are located approximately 45 deg on either side of the vertical centerline.

The outboard equipment structural arrangement for Configuration $3 B$ is shown in Figure 4-12.

As previously considered, the outboard equipment consists of two groupings:

- Equipment and consumables which are directly related to shelter operation such as the cryogenic tankage and fuel cell assemblies
- Equipment related to extra-shelter activities, namely, the scientific equipment packages and the LSSM
e. Cryogenic Tanks--It was assumed that each cryogenic tank would have three thermally isolated points of support located at 90 deg intervals on a common circle; the two points 180 deg apart would have torque restraint provisions.

As shown in Figure 4-12, each tank is supported on diametrically opposite sides by tubular trusses and by a tubular link oriented at 90 deg to the approximately parallel planes of the trusses. A common member in each truss is used to carry the X direction flight and landing loads from both tanks to the LM/Truck cruciform beams at $\pm 27 \mathrm{Z},-75 \mathrm{Y}$. This member is 2 in . dia aluminum tube with an 0.065 in . wall thickness. The Y direction loads on each tank are carried separately by the truss members which are connected tangentially to the two main frames of the shelter structure.

The Z direction loads on each tank are carried from the center support point on the tank to the shelter structure by a horizontal tubular link which is parallel to the shelter longitudinal axis and differentially by the trusses to the cruciform beams.

AIRESEARCH MANUFACTURING DIVISION

Page Intentionally Left Blank

Page intentionally left blank

For post landing support of X direction loads independently of the LM/Truck, a member of each truss carries the X direction loads on both tanks from the common truss connection at the O_{2} tank trunnion to a tangential fitting on each main frame.

Except for the above cited dimensions of the truss member connected to the. LM/Truck beam, all other truss members and the Z direction horizontal links are $1-3 / 4 \mathrm{in}$. dia aluminum tubes with an 0.035 in . wall thickness. All truss connections to the shelter have fiberglass interfaces for thermal isolation.
f. Fuel Cell Assemblies, Power Conversion and Electronic Equipments-Since in the outboard profile the consideration of a third fuel cell assembly was primarily to show that it could be accommodated, for the structural arrangement the power conversion and the electronic equipments were reoriented 90 deg in the $Y Z$ plane to position the cg of the combined mass in closer proximity to the LM/Truck cruciform beam.

A common structural frame is used to contain the two fuel cell assemblies, FCA collector tank, power conversion and electronic equipments. The lower member of the frame face in close proximity to the cryogenic tanks is connected by fittings to the LM/Truck cruciform beams. The vertical corner members of the frame face adjacent to the shelter structure are connected to the middle longeron, the aft main frame and the aft convenience frame of the shelter structure. The prelanded X direction loads are carried by the cruciform beam and the convenience frame, the Y direction loads differentially by the cruciform beam, and the Z direction loads by the longeron and cruciform beam.

For post landing loads, without the connections to the truck, the two shelter frames and middle longeron react all the loads from the equipment container/frame.
g. Thermal Control Radiators--The inboard and outboard edges of each radiator are connected by fittings to the upper longeron where it intersects the two main frames and each of the end-dome compression rings. These four fittings carry the Y and Z direction loads and part of the X direction loads. The remainder of the X direction loads are carried by a series of aluminum struts, 0.75 in. in dia with a wall thickness of $0.028 \mathrm{in} .$, from radiator hardpoints to connections at the main frames and end-dome compression rings.
h. Scientific Equipment--Considering the number of individual packages and the variety of sizes, shapes, and masses, it was assumed that the clusters of equipment as shown in the outboard profile, Figure 4-6, would be housed in structural container/frames, minimizing the number of individual connections to the shelter and LM/Truck and facilitating the application of dynamic mounts for the individual items.

The structural connection of the scientific equipment container/frames to the LM/Truck and shelter would be as previously described for the fuel cell assemblies, etc., with the probable exception of complete support by the shelter for post landing loads, which is necessary only to allow various forms of shelter deployment.

Equipment container/frames which are not located directly over or in close proximity to the LM/Truck beams, such as on both sides of the LSSM, utilize shear webs connected to the end dome compression rings and convenience frame, or airlock bulkhead edge member, to react all vertical loads.
i. LSSM--The storage configuration of the LSSM was considered as a rigid structural unit capable of carrying its own loads between tie down points and having a self-contained force system to deflect the wheels. It was assumed that fittings could be attached to the LSSM to provide two sets of tie-downs, the tie-downs of each set being 54 in . apart to match the spacing of the shelter main frames and the LM/Truck beams.

The LSSM is supported at the forward end of the chassis by two fittings mounted directly to the LM/Truck beams at $\pm 27 \mathrm{Z}, \pm 81 \mathrm{Y}$ and at the aft end by two links from the main chassis, near the center wheel support, to the two main frames of the shelter structure. The two fitting connections to the LM/ Truck beams carry all the LSSM loads in the X and Z directions. The Y direction loads are carried by the forward end fittings to the LM/Truck and the upper links, which are $1 / 2 \mathrm{in}$. dia aluminum tubing with an 0.035 in . wall thickness.

2. Configuration 4 Structural Arrangements

The shelter structural arrangement for Configuration 4 is shown in Figure 4-13. The pressure shell consists of two parallel, 74-in.-high, intersecting, stiffened thin skin cylindrical shells with spherical sector roof domes and an aluminum flat honeycomb floor. The main cylindrical shell has a $58.5-i n$. radius and its roof dome has a $108-\mathrm{in}$. radius. It intersects the airlock cylindrical shell, which has a $36-i n$. radius and a roof dome radius of 97.7 in., along a common chord 68 in . wide.

A 35 in . dia docking ring and tunnel are symmetrically located above the center of the main cylindrical shell; the ring is structurally supported by four trusses which are connected to the intersection of the four invertedulu shaped main frames used to carry docking and shelter loads to the LM/Truck.

Internally, the shelter has a aluminum honeycomb flat bulkhead located at the chord of intersection, which is 47 in . forward of the center of the main shell, separating the airlock from the work/living area.

The shelter structure is connected to the LM/Truck by eight fittings tying the lower ends of the four main frames to the four beams forming the cruciform.
a. Stiffened Cylindrical Shells--The methods of providing circumferential and longitudinal stiffening elements to produce shear panels are the same as for Configuration 3B.

Also the nominal 0.030 in . skin thickness, required for the micrometeoroid backup sheet, is more than sufficient for the 11.6 psi burst pressure requirement; and as for Configuration 3B, local discontinuities where structural members are joined to the skin are accommodated by increasing the skin thickness to about 0.065 to 0.090 in . for approximately 2 in . on each side of the discontinuity.

AIRESEARCH MANUFACTURING DIVIIION

Page Intentionally Left Blank

The shear panels for this configuration are approximately 12 in . wide by 32. in. high and, except at six locations where the main frames join the stiffened skin, have radially outward extending vertical and horizontal stiffening elements of approximately 0.1 sq in. cross-sectional area. These stiffeners also provide the locations for fastening the standoffs which are used for supporting the micrometeoroid bumper panels.

The main cylindrical shell has four inverted-U main frames, located internally, to carry the loads from the docking ring, external equipment, and shelter to the LM/Truck. They are symmetrically located with respect to the centerline of the main cylindrical shell and are arranged as orthogonal pairs of frames, the frames of each pair are 54 in . apart to match the LM cruciform beam edge-member spacing. The frames have an I cross-section with a maximum depth of 6 in . and 3 -in.-wide flanges which are approximately 0.12 in. thick. The depth of the I section for the vertical legs of the frames tapers from the maximum of 6 in . at the top to approximately 3 in. at the fittings which attach the shelter to the truck beams. The outer flanges of the frames are locally thickened areas of the main cylindrical shell and roof dome; the use of the cylindrical shell skin as a flange is shown in Section B-B of Figure 4-13.

Eight longerons arranged coincident with the vertical legs of the four main frames would provide the beam strength to the stiffened main cylindrical shell for inertial loads. The nominal individual longeron area required is approximately 0.15 sq in . The section properties of the vertical legs of the frames as described above also satisfies these requirements.

The internal location of the eight legs of the four frames allows their direct use for carrying the vertical and radial inertial loads on wall mounted internal equipment and consoles. Internally located intercostal horizontal stiffeners attached to the skin are used to carry the relatively minor tangential loads from equipments which are too high above the floor for efficient attachment to it.

The airlock cylindrical shell has a 34- by $60-i n$. rectangular opening for the airlock door; it is symmetrically located with respect to the intersection with the main cylindrical shell. The reinforcing edge-members consist of two vertical posts, a lintel, and a coaming, supported directly from the honeycomb pressure floor. The vertical posts carry the bending and torsion loads from the pressurized door reactions and hoop tension in the cylindrical shell. As shown in Section C-C of Figure 4-13 they are triangular tubes with 0.12-in.thick sidewalls which are approximately $4 \mathrm{in} ., 6 \mathrm{in} .$, and 7 in . wide. The loads in the posts are reacted by the floor and two internal I-beams, having flanges integral with the roof dome skin, connected to two of the main cylinder frames. The lintel over the opening is a 6 - by 3 -in. boxbeam with 0.12 in . thick walls which acts as a balcony beam and transfers the roof dome membrane loads across the top of the opening to the vertical posts. The coaming is similar in size to the lintel but of lighter wall thickness.
b. Roof Domes and Airlock Bulkhead--The micrometeorid protection backup sheet thickness of 0.030 in . is sufficient for the tension loaded membrane skins of both roof domes. A compression ring, as shown in Section A-A of Figure 4-13, is used at the dome/cylinde: intersection of the main cylindrical shell; a similar arrangement is used for the airlock cylindrical shell and
roof dome. At their chordal intersection, the roof domes are welded to a common reinforcing.element which also is used to support the upper edge of the internal airlock bulkhead as shown in Section K-K of Figure 4-13. As for the end domes in Configuration 3B, external stiffeners attached to the skins of both roof domes provide the locations for fastening the standoffs for the micrometeoroid bumper.

The inboard bulkhead, located in the plane of the intersection of the two cylindrical shells, has a symmetrically located 42- by 57-in. elliptical opening for the airlock door. It is aluminum flat honeycomb approximately. 4 in . deep with a 3 to $4 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$ core and tapered face sheets which have a maximum thickness of 0.060 in . The forward vertical legs of the Z direction main frames are connected to the bulkhead and thereby help minimize the deflection of the edge reinforcing ring around the opening. The bulkhead is attached to the cylindrical shells at their intersections with a common reinforcing element similar to that used at the roof dome intersection. The connection between the bulkhead and the pressure floor is provided by a single line attachment of the bulkhead edge member to an I-beam integral with the floor. Therefore, no bending moments due to deflection of the bulkhead are transferred to the floor." The arrangement of this lower edge connection is shown in Section K-K of Figure 4-13.
c. Shelter floor--The pressure retaining floor is an aluminum flat honeycomb 3 in . deep with a 3 to 4 lb cu ft core and tapered face sheets which have a maximum thickness of 0.050 in . As shown in Section A-A of Figure 4-13, an edge member is used to provide continuous structural connection between cylindrical shells and the floor. An integral I-beam accommodates the pressure tight structural connection of the airlock bulkhead to the floor.
d. Docking Ring and Tunnel--The docking tunnel connection to the main cylinder roof dome and accommodation of an in-flight access hatch is similar to that described for Configuration 3B.

The docking ring for this configuration is supported by, four trusses made from 2-1/2-in.-dia by 0.063-in.-wall-thickness aluminum tubing. The trusses are connected to the docking ring at four equidistant places about its periphery and to the stiffened main cylindrical shell at the four intersections of the main frames as shown in detail G of Figure 4-13. A fiberglass fitting is used at the shelter end of each truss member to provide thermal isolation between the docking ring and shelter.

The method used to transfer the loads from the eight legs of the main frames through the floor to the LM/Truck tie-down fittings is shown in details E and J of Figure 4-13. The legs of the frames terminate slightly above the inner face sheet of the floor. At each leg location, the floor contains a fitting which has a tongue that protrudes through the inner face sheet of the floor to allow a mechanical connection to the frame leg. Pressure integrity of the floor is maintained by a sealing weld around the tongue where it passes through the face sheet. Each tiedown fitting is attached to the fitting integral with the floor by bolts which pass through the lower face sheet. airesearch manufacturing division

Book I
The outboard equipment structural arrangement for Configuration 4 is shown in Figure 4-14. As in Configuration 3B, the equipment consists of two main groupings, one related to shelter operation and the other to extra-shelter activities.
e. Cryogenic Tanks--It was assumed that each cylindrical cryogenic tank would have end cones with support points at each apex; the upper support point would have torque restraint provisions. As shown in Figure 4-14, the X direction flight and landing loads on the forward H_{2} tank and the O_{2} tank are carried by fittings connecting their lower support points to the LM Truck cruciform beam. Two $0.020-i n .-t h i c k$ shear webs connecting the cylindrical section of the aft H_{2} tank to two legs of the shelter main frames carry all the X direction loads on that tank. The Y and Z direction loads on the forward H_{2} tank and the O_{2} tank are carried by a common truss between the tops of all the tanks and the shelter structure and by the fittings, under the tanks, to the $L M /$ Truck cruciform beam. The Y and Z direction loads on the aft tank are carried by the upper common truss and a truss connecting the lower support point to the shelter floor at two frame leg locations.

For post-landing support of the X direction loads on the forward H_{2} tank and on the O_{2} tank independently of the LM/Truck, a separate compression strut for each tank carries the loads from a fitting at the cone periphery/tank interface to the edge member of the honeycomb floor. A lower truss, with the same configuration as the upper truss, provides the Y and Z direction support of these tanks independently of the truck.

The truss members carrying the flight and landing loads on the O_{2} tank are 1-1/2-in.-dia aluminum tubes with an 0.030-in. wall thickness; all other truss members are 3/4-in.-dia aluminum tubes with an 0.030-in. wall thickness. All truss and shear web connections to the shelter are thermally isolated from it.
f. Fuel Cell Assemblies, Power Conversion and Electronic Equipments-As in Configuration $3 B$, a common structural frame is used to contain two fuel assemblies, FCA collector tank, power conversion, and electronic equipments. All the loads on the container/frame are transferred to the shelter by horizontal and vertical shear webs. The vertical webs are connected to the vertical leg of the forward transverse main frame and to the reinforcing element at the common intersection of the cylindrical shells and ther internal bulkhead. The horizontal webs are connected to the floor edge member and the roof dome/cylindrical shell compression ring; the frame extends above the equipment contained in it to allow the latter connection.
g. Thermal Control Radiators--The lateral loads on the radiators are carried by four fittings connecting their inner edges to the intersections of the four main frames at the roof dome. The vertical loads are carried by the four fittings carrying the lateral loads and six struts connecting the outer periphery of the radiators to four main frame legs and to the two vertical door posts of the overboard airlock door opening. The struts are 0.75 in . aluminum tubes with a wall thickness of 0.028 in.
h. Scientific Equipment--As in Configuration 3B, the scientific equipment is housed in structural container/frames.

Figure 4-14. Configuration 4 Vertical Cylinder Outboard Equipment Structural Arrangement

The grouping of scientific equipment forward of the LSSM is supported in a manner similar to that used for supporting the fuel cell assemblies, etc. The vertical shear webs are connected to the vertical stiffening member of the skin shear panel and the reinforcing element at the common intersection of the cylindrical shells and airlock bulkhead. The horizontal shear webs are connected to the floor edge member and the horizontal intercostal located at the mid height of the airlock stiffened skin.

The equipment grouping aft of the LSSM is supported in a manner similar to that used for the above grouping.

The container/frame of equipment located aft of the shelter is connected to the cruciform beams by two fittings and to the two aft legs of the Z direction main frames, near the dome compression ring, by two struts. The truck beams carry the X and Y loads; they Y direction loads are reacted differentially. The Z direction loads are carried by the truck fittings and the two fittings to the frame legs.
i. LSSM--The same assumptions for the LSSM in the storage mode for Configuration $3 B$ were applied in this configuration.

The LSSM is supported at the forward end of the chassis by two fittings mounted directly to the LM/Truck beams at $\pm 27 Z, \pm 81 Y$ and at the aft end by two fittings from the LSSM main chassis to the intersections of the dome/shell compression ring and the vertical legs of the transverse main frames. The two fittings connections to the LM/Truck beams carry all the LSSM loads in the X and Z directions. The Y direction loads are carried by the forward end fittings to the truck and the main chassis fittings to the compressing ring/leg intersections.

Mass Summaries

The mass summaries for Configurations $3 B$ and 4 are shown in Table 4-3. To provide a broader base for comparing the two configurations, the summaries include the structural and protection provisions directly related to shelter configuration and overall payload arrangement such as outboard equipment supports and micrometeoroid protection provisions.

The following paragraphs discuss or describe the considerations pertinent to the masses shown in the table.

The weights of the shelter structure are for the machined skin method of providing a stiffened aluminum (2219-T87) skin.

As discussed previously in this section, shelter internal equipment and supplies provide the majority of the required shielding for a radiation refuge. Since the equipment and supplies are the same for both configurations and the resulting refuge configurations are also approximately the same, the additional shielding required is the same. Early in the study, it appeared that 400 lb of aqueous liquids would be on board; the 170 lb shown in the table is for polyethylene and additional water.

TABLE 4-3
MASS SUMMARIES CONFIGURATIONS $3 B \& 4$

Equipment	$\underset{\text { KG }}{\text { Configuration 3B }}$ (LBM) Horizontal Cylinder				Configuration 4 - Vertical Cylinder KG (LBM) KG (LBM)			
Shelter Structure			372	(820)			420.0	(926)
Pressure Skin and Hands	88.5	(195)			59	(130)		
Stringers and Longerons	18.2	(40)			27.2	(60)		
Frames	47.6	(105)			56.7	(125)		
Airlock Inner Bulkhead, Door and Mechanism	65.8	(145)			68.1	(150)		
Overboard Door and Mechanism Penalty	25.0	(55)			22.7	(50)		
Floor and Supports	43.1	(95)			113.4	(250)		
Docking Structure and Hatch	38.6	(85)			36.3	(80)		
Viewing Ports	27.3	(60)			27.2	(60)		
Fittings	18.2	(40)			9.5	(21)		
Meteoroid Protection (Exclusive of backup sheet)			61.2	(135)			52.2	(115)
Bumper Panel	36.3	(80)			29.5	(65)		
Standoffs	4.5	(10)			4.5	(10)		
Foam	20.4	(45)			18.2	(40)		
Thermal Insulation (30 sheets SI)			11.3	(25)			10.9	(24)
External Equipment Supports			122.5	(270)			106.8	(235)
Internal Equipment Supports			100.0	(220)			100.0	(220)
Radiation Refuge Additional Provisions			77.1	(170)			77.0	(170)
Equipment Unloading, Crew Access			43.1	(95)			43.1	(95)
Total			788	(1735)			810	(1785)

The weights for the internal structural provisions were assumed to be the same for both configurations and were estimated based on reviews of previous studies, LM, and AAP studies.

The thermal protection weight was based on the AiResearch specified requirement of $1 / 2 \mathrm{in} .-30$ sheets of super insulation covering the total external surface area of the shelter. The micrometeoroid protection weights shown are in addition to the backup sheet requirements. For Configuration 3B, the total surface area of the shelter minus the area protected by the LM/Truck (lunar surface) was considered as requiring protection. For Configuration 4, the total surface area of the shelter minus the flat floor area was considered as requiring protection. For both configurations, the reduction of exposed area due to the protection afforded by the external equipment was not considered; the effective shadow areas are dependent on the 'as landed' position, some of the equipment would be removed at the beginning of staytime and it was considered that the foam would still be retained in the shadowed areas to provide a smooth surface for the superinsulation. Similarly the bumper would protect the insulation during equipment unloading or crew inspection of the shelter. The potential weight saving by not using the bumper in the shadowed areas is comparatively small.

The unloading, handling provisions and walkways are for the deployment of the LSSM, scientific equipment, and crew access between the truck mounted shelter and the lunar surface.

Recommended Configuration

The Horizontal Cylinder $3 B$ was selected as the recommended configuration based on the following considerations:

- Greater volume at a lower weight
- Form factor, i.e., length to diameter ratio, allows more favorable arrangement of equipment and duty stations from crew habitability viewpoints
- Structural arrangement easily accommodates changes in volume goal, with minimum redesign, by simple changes in length of horizontal cylindrical shell
- More readily adaptable to derivative modes such as addition of mobility systems
- Alternative large experiment payloads, e.g., optical astronomy package, more easily accommodated by the chordal volume rather than annular volume between the side of the shelter and the payload envelope
- Simpler to fabricate

STRUCTURAL CRITERIA AND LOADS

A review of the structural criteria used on the AAP shelter program with those given in the study guidelines (Reference 1) shows that there are some differences in design levels which do not appear to have a significant impact on the structural design for this study. It is estimated that these differences will not vary the structural member sizes by more than a few percent in material thickness and, hence, the estimated weight. In view of the above, and in order to make the results of this study more readily comparable with. those of the AAP shelter program, the ELS design study used the structural criteria and loads of the AAP shelter.

Design Loads Criteria

1. Design Factors

At mission levels times the ultimate factor of safety there shall be no failure of structural members. The ultimate factor shall not be less than 1.5 applied to mission levels.

Pressure vessels shall be designed to a burst pressure which is equal to twice the maximum pressure. For purposes of this design the cabin structure will be designed using the above criteria.

The design limit factor for the vibration conditions is 1.3 applied to the g and double amplitude and (1.3$)^{2}$ applied to random vibrations (g^{2} per cps) for fatigue critical structure.

For strength-critical structures, the factor is 1.5 applied to g and DA and (1.5$)^{2}$ applied to random vibrations (g^{2} per cps).

Mission Level Loads and Accelerations

1. Launch and Boost Conditions

Launch and Boost C-5
Acceleration (2)
List off condition
Maximum q condition
($\mathrm{S}-\mathrm{IC}$)
Boost condition ($s-I C$)
Cut off condition (S-IC)
Engine hardover (s-11)
Engine hardover (s-11)
Earth orbit

X		Y		Z	
g	$R a d / \mathrm{sec}^{2}$	g	$R a d / \mathrm{sec}^{2}$	g	$R a d / \mathrm{sec}^{2}$
+1.60	--	± 0.65	--	± 0.65	--
+2.07	--	± 0.30	--	± 0.30	$--\cdots$
+4.90	-	± 0.10	--	± 0.10	--
-1.70	--	± 0.10	--	± 0.10	--
+2.15	--	± 0.40	--	--	--
+2.15	--	--	--	± 0.40	--
0	0	0	0	0	0

Vibration

The mission vibration environment is represented by the following random and sinusoidal envelopes considered separately:

INPUT TO EQUIPMENT-SUPPORTS

From Exterior Primary Structure

Random

10 to 23 cps	$12 \widetilde{\mathrm{db} / \text { octave rise to } 0.0148 \mathrm{~g} / \mathrm{cps} ;}$
23 to 80 cps	$12 \mathrm{db} /$ octave rise to $0.044 \mathrm{~g}^{2} / \mathrm{cps}$
80 to 105 cps	
105 to 950 cps	$12 \mathrm{db} /$ octave decrease to $0.048 \mathrm{~g}^{2} / \mathrm{cps}$
950 to 1250 cps	
1250 to 2000 cps	

Sinusoidal

5 to 18.5 cps
0.154 in $D A$
18.5 to 100 cps
2.69 g peak

From Interior Primary Structure

Random

$$
\begin{array}{ll}
10 \text { to } 23 \mathrm{cps} & 12 \mathrm{db} / o c t a v e \text { rise to } 0.0148 \mathrm{~g}^{2} / \mathrm{cps} \\
23 \text { to } 80 \mathrm{cps} & \\
80 \text { to } 100 \mathrm{cps} & 12 \mathrm{db} / \text { octave rise to } 0.0355 \mathrm{~g}^{2} / \mathrm{cps} \\
100 \text { to } 1000 \mathrm{cps} & 12 \mathrm{db} / \text { octave decrease to } 0.0148 \mathrm{~g}^{2} / \mathrm{cps} \\
1000 \text { to } 1200 \mathrm{cps} & \\
1200 \text { to } 2000 \mathrm{cps} &
\end{array}
$$

Sinusoidal
5 to 16 cps
0.154 in DA
16 to 100 cps
1.92 g peak

For design purposes the above random spectrum applied for 5 min along each of the three mutually perpendicular axes X, Y, and Z when applied in addition to the corresponding sinusoidal spectrum acting for 5 sec at the natural frequency of the equipment being designed will adequately represent the environment.

During the launch and boost phase of flight, the LM is exposed to random vibration of varied levels and spectra for 17 min . During all but approximately 2.5 min of this period, the intensity of the random vibration is of such low level that it is considered to be of negligible design significance. In addition, the launch and boost enviroment is considered to include peak vibration levels which are represented by the above sinusoidal vibration envelopes. The number of sinusoidal peaks for design can be considered to be one percent of the natural frequency of the equipment being designed times the number of seconds of exposure. For design purposes, the above random spectrum applied for 5 min along each of the three mutually perpendicular axes X, Y, and Z, when applied in addition to the above sinusoidal vibration for 300 sec exposure time, will adequately represent the vibration environment.

Vibration levels may be lower at specific equipment locations due to the reaction of equipment on primary structure. Therefore, a rationally demonstrated reduction in those levels may be used for LM equipment design and test.

Launch and Boost C-5
Acoustics:
(sound pressure levels in db
external to LM) (re 0.002 dynes $/ \mathrm{cm}^{2}$)

Octave Band, cps	C5 at Maximum q Level, $\xrightarrow{\mathrm{db}}$
9 to 18.8	136
18.8 to 37.5	142
37.5 to 75	146
75 to 150	143
150 to 300	139
300 to 600	135
600 to 1200	130
1200 to 2400	125
2400 to 4800	119
4800 to 9600	113
Overall	150

Acceleration	X		Y		Z	
	g	Rad/sec ${ }^{2}$	g	$\mathrm{Rad} / \mathrm{sec}^{2}$	g	Rad/sec ${ }^{2}$
SM prop system operating	-0.36	--	± 0.062	± 1.99	± 0.062	± 1.99
SM prop system not operating	0	0	0	0	0	0
Shock						
Condition	-0.052	--	± 0.065	± 0.10	± 0.065	± 0.10

Vibration

SM prop system
$\mathrm{N} O \quad \mathrm{~N} \quad \mathrm{E}$ operating

Plume Effects

Due to engines Due to RCS

In addition to the loads resulting from the above accelerations, the primary structure is subjected to the forces resulting from docking maneuvers and the mid-course correction maneuver during translunar flight. Most of the primary structure is designed for the mid-course maneuver condition with the loads applied to the docking collar at station 317. For the local docking structure the critical condition is axial load $=14,900 \mathrm{lb}$, moment $=548,000$ in.-lb, and shear $=3030 \mathrm{lb}$ ultimate. The value of $548,000 \mathrm{in} .-\mathrm{lb}$ corresponds to $360,000 \mathrm{in} .-1 \mathrm{~b}$ limit. The original value of $306,600 \mathrm{in} .-\mathrm{lb}$ limit was revised to $366,000 \mathrm{in} .-1 \mathrm{~b}$. Subsequent to the calculation of these loads, the AAP loads due to mid-course maneuver were revised downward, therefore the use of the above is conservative and satisfactory for this analysis. It should be noted that a final analysis will include the changes in mass properties as compared to AAP. The current AAP values are included in the table below for reference.

MIDCOURSE CORRECTION MANEUVER - LIMIT INTERFACE EOADS

	SPS Nominal Thrust Buildup			SPS Maximum Thrust Buildup		
	Maximum Moment Shear Torsion	Maximum Axial	Minimum Axial	Maximum Moment	Maximúm Axial	Minimum Axial
Bending moment	174,000	52,800	144,000	46,400	8,230	13,100
Shear	940	230	390	320	66	110
Axial load	-15,400	-19,350	-4,000	-13,800	-24,600	19,900
Torsion	-15,200	-13,800	-3,960	0	0	0

The shear and binding loads may be applied about any axis in the $\mathrm{Y}-\mathrm{Z}$ plane.
3. Descent and Landing

Accelerations

Descent engine operating

Transfer orbit
Landing: Steady State at CG of LM

Case I
Case 2
Case 3
Case 4
Case 5

X		Y		Z	
g	$\mathrm{Rad} / \mathrm{sec}^{2}$	9	Rad/sec ${ }^{2}$	g	Rad/ sec^{2}
+0.82	± 0.19	± 0.08	± 0.65	± 0.08	± 0.65
0	0	0	0	0	0
0.798	± 0.036	± 1.778	-0.016	0	± 14.56
0.798	0	0	17.60	1.778	0
0.857	± 15.82	± 0.095	9.05	-0.421	± 0.573
2.74	0	0	± 28.1	± 0.514	0
2.74	± 0.01	± 0.514	-0.055	0	± 23.3

Shock:

> Landing: 20 ms Rise Time 200 ms Dwell Time - 40 ms Decay

Case 1
Case 2
Case 3
Case 4

X		Y		Z	
g	$\mathrm{Rad} / \mathrm{sec}^{2}$	g	$\mathrm{Rad} / \mathrm{sec}^{2}$	g	$\mathrm{Rad} / \mathrm{sec}^{2}$
				\ddots	
8.0			± 14.0		
		± 8.0			± 14.0
			± 14.0	± 8.0	
8.0					± 14.0

Vibration: The mission vibration environment is represented by the following random and sinusoidal envelopes considered separately:

INPUT FROM PRIMARY STRUCTURE
(Appropriate Account Must be Taken for Transmissibility of Secondary Struct.)

To Ascent Stage Equipment Support
Random

10 to $20 \cdot \mathrm{cps}$	$12 \mathrm{db} /$ octave rise to $0.02 \mathrm{~g}^{2} / \mathrm{cps}$
20 to 100 cps	
100 to 120 cps	$12 \mathrm{db} /$ octave decrease to $0.01 \mathrm{~g}^{2} / \mathrm{cps}$
120 to 2000 cps	

Sinusoidal
5 to 17 cps
$0.10 \mathrm{in} . \mathrm{DA}$
17 to 100 cps
1.5 g peak

To Descent Stage Equipment Support
15 to 100 cps
$0.031 \mathrm{~g}^{2} / \mathrm{cps}$
100 to 175 cps
$6 \mathrm{db} /$ octave decrease to $0.010 \mathrm{~g}^{2} / \mathrm{cps}$
175 to 2000 cps

Sinusoidal

5 to 20 cps	$0.10 \mathrm{in} . \mathrm{DA}$
20 to 100 cps	1.92 g peak

For design purposes the above random spectrum applied for $12-1 / 2 \mathrm{~min}$ along each of the three perpendicular axis X, Y, and Z, when applied in addition to the corresponding sinusoidal spectrum acting for $12-1 / 2 \mathrm{sec}$ at the natural frequency of the equipment being designed will adequately represent the environment.

Cabin Pressure

The internal pressure used for the design of. the basic pressure shell is 5.8 psia times a safety factor of 2.0 for ultimate burst pressure. This value is 11.6 psia ultimate. Where the pressure load is combined with other loads, the safety factor is 1.50 .

Vibration and Acoustics

For preliminary structural design, sinusoidal levels can be used to obtain g load factors for equipment support structures.

Design load factors as a function of equipment weight for LM equipment have been collated and are presented in Figures 4-15, 4-16, and 4-17. This data may be used for first-cut sizing of comparable ELS equipment supports. Since AAP and LM sinusoidal levels at low frequencies are higher than NASA guideline values these loads should be conservative. It should be noted, however, that load factors are a function of equipment and backup support structure stiffness as well as mass, and stiffness effects should be accounted for as soon as preliminary sizing information becomes available.

In-situ Deployment

For all in-situ deployment operations an overall safety factor of 2.0 on the lunar surface applied loads is used.

This was considered adequate for powered as well as manual operations since in the former case all accelerations and transients would be very small and the drive mechanisms would have inherent shock attenuating elements such as wire rope cables.

Figure 4-15. Vibration Response Weight vs G's X Coordinate

Figure 4-16. Vibration Response Weight vs G's Y Coordinate

Figure 4-17. Vibration Response Weight vs G's Z Coordinate

CONCEPTUAL DESIGN STRUCTURAL CONSIDERATIONS

The primary considerations pertinent to the structural conceptual design of the shelter are:

- Materials
- Pressure element form/construction
- Location of primary structural elements
- Pressure wall penetrations

Materials

A qualitative evaluation of candidate materials was based on the following criteria:

Minimum weight for total mission time and environment
Compatibility with methods of construction
Where compatible with mission constraints, use of materials qualified for the Apollo program or those for which extensive use experience and data are available

Accommodation of extensions in mission time, quiescent and staytime, with minimum degradation of performance

As a result of a general survey, structural alloys of the following metals were selected as candidate materials: aluminum, beryllium, magnesium, stainless steel and titanium.

In addition to the usual strength to weight considerations, these materials were compared on an equivalent weight for equal meteoroid protection basis as subsequently discussed in this section. The results, as given below, show the lower density materials to be preferable for meteoroid protection.

Material	Weight Factor
Beryllium	0.68
Magnesium	0.98
Aluminum	1.00
Titanium	1.35
Stainless steel	1.65

Based on the criteria specified for evaluating candidate materials, in general, aluminum alloys are preferred for structural applications. Beryllium was eliminated because of its lack of weldability, and the marginal weight advantage offered by magnesium was considered offset by its inferior strength to weight ratio, except for shear panel use, and by the requirement for heated forming. A comparison of the characteristics and properties of aluminum alloys with the requirements of specific applications led to the following recommendations:

> Alloy-2219-T87 for all structural elements requiring a comgination of welding, machining and forming operations. Properties: isotropic strength, 50,000 psi yield, 63,000 tensile ultimate, with minimum elongations; 5 percent longitudinal, 4 percent long transverse, 3 percent short transverse
> Alloy 7079 for all mechanically attached fittings, typical of the support fitting to the LM truck
> Alloy 7075 for all structural trusses using tubing as the primary elements

Form/Construction of Pressure Elements

The major pressure elements of the shelter are the stiffened skin of the cylindrical shell, end domes, and internal bulkhead. Only the internal bulkhead may be subjected to a ΔP across it in either direction.

1. Stiffened Skin of the Cylindrical Shell

The criteria used in selecting the preferred form/construction of the stiffened skin are as follows:

Pressure integrity
Minimum weight
Ease of fabrication
Since the loading criteria, thermal environmental, requirement for external and internal support structure integration; and curvature of skin are similar to that of LM, much of the information generated in selecting the form/ construction of the pressure shell on LM was relatable to this study.

The following design concepts for a stiffened skin were investigated:
Machined skin with integral stiffeners, skin curvature formed after machining

Preformed skins with all stiffeners welded or mechanically fastened

Combinations of partially machined skins and welded or mechanically fastened stiffeners

Honeycomb framed core panels
The above concepts differ significantly in detail and subassembly fabrication, however, for all cases it was considered that the cylindrical shell would be fabricated as three equal length sections and the same amount of pressuretight fusion welding would be required to join the sections for the final assembly.
a. Machined Skin--The longitudinal and circumferential stiffeners are integral with the thin skin as a result of milling the shear panels out of a plate approximately 1 in. thick by 4.5 ft wide by 25.5 ft long. After machining, the plate would be formed into a cylindrical shell, welded together and the required built-up frames and longerons welded or mechanically fastened to the outstanding stiffeners without requiring penetrations of the thin pressure shell or causing degradation of its properties. Bosses may be similarly integral with the skin and by means of blind tapped holes allow transfer of loads through the skin without penetrations or welding.

A similar approach of using machined skins on $L M$ had been studied and $;$ determined not applicable because the required skin thickness of only 0.015 : in. placed unrealistic demands on tooling and machining operations. However this shelter's skin thickness of about 0.030 in . mitigates this cause for rejection.

As shown by the following discussions of the other design concepts, a machined skin with integral stiffeners is preferred since it provides maximum pressure integrity, offers minimum weight and can be fabricated using current capabilities and techniques.
b. Methods of Attaching Stiffeners to Skins--The preformed skin and partially machined skin concepts require stiffeners to be attached directly to the thin skin. Four methods of attaching structural elements, i.e., stiffeners to the skin were considered, namely:

Riveting
Bonding
Spot Welding
Fusion Welding
As indicated by its extensive use on $L M$, riveting is most appropriate where structural complexity at joints precludes automated fusion welding and complete access to both sides of the weld for inspection. However, this condition is not prevalent in the recommended shelter configuration; therefore, riveting, which requires penetrations through the skin, was rejected as a general method of structural attachment.

Bonding is considered acceptable only for honeycomb panels and lightly loaded structural members. It is considered unacceptable for use where high concentrations of shear flow occur across relatively small areas as in longeron or frame caps.

A review of the applicability of spot welding revealed the following reasons for its rejection as a general method of structural attachment to the pressure skin. There is very little data available on its use in curved tension field shear panel design. As a result, thicker lands (obtained by machine or chem-milling of the skin sheet) appear necessary and therefore is a step toward a machined skin. Also, thicker flanges may be required for spot welding to the thicker lands; testing would be required to determine a satisfactory combination. Alternatively, a 50-to 75 -percent increase in the number of stiffeners would be required to maintain fully shear resistant panels. The unpredictability of leakage due to spot weld porosity and possible pull through of spot welds under load would further complicate the precautions and operations in fabrication, testing, and possible repairs. The lesser reduction of material properties caused by spot welding is applicable to only a small percentage of the total surfaces and is negated by the preceding considerations requiring thicker lands or more stiffeners.

Although fusion welding causes the greatest reduction in material properties, the simple shape of the shell and the orthogonal orientations of the stiffeners relative to the curvature of the shell allow fusion welding to be readily accomplished. Also, the simple shape and size of the shell allows direct and conventional methods of weld inspection.

Therefore, by the process of elimination, fusion welding is preferred over the other methods of attaching structural elements directly to the skin.
c. Preformed Skin and Welded Stiffeners--This concept has a minimum amount of skin machining operations but the greatest number of detail parts which require approximately 490 ft of welding directly to the pressure skin.

The reliability, testing, and repair requirements as a consequence of possible blow through associated with this extensive welding and the consideration that all load transfers occur through a welded joint were the dominant factors for rejecting this concept.
d. Combinations of Partially Machined Skins and Welded Stiffeners--The following alternatives within this concept were considered:

Machined circumferential stiffeners/welded longitudinals
Machined longitudinal stiffeners/welded circumferentials
The comparison of these alternatives was based on:
Linear feet of welding
Ease of fabricating machined skins
Weight

AIRESEARCH MANUFACTURING DIVISION

The possible use of extruded skins with integral circumferentials was abandoned based on the limitations of width and significant amounts of machining/chem milling.

For recommended configuration, the comparison of partially machined skins and welded stiffeners is summarized as follows:

Criterion	Machined Circumferentials/ Welded Longitudinals	Machined Longitudinals/ Welded Circumferentials
Linear feet of	340 ft of simple straight line welding, details easily fitted.	150 ft of circumferential welding. Fitting and welding of details more difficult.
Ease of fabricating machined skins	4.5 by 25.5 ft plate machined to provide 3 integral stiffeners, each 25.5 ft long. Easily formed into cylindrical shell.	4.5 by 25.5 ft plate machined to provide 26 integral stiffeners, each 4.5 ft long. Requires more extensive machining operations. More difficult to form. into a cylindrical shell.
Weight	Equivalent of 32 lb of stringers/longerons subjected to a 25 percent degradation. *Relative weight penalty of 8 lb .	Approximately 100 lb of frames subjected to 20 percent degradation. *Relative weight penalty of 20 lb .

*Compared to a fully machined skin
Within this concept of a stiffened skin, the machined circumferential stiffeners/welded longitudinals was selected as the preferred alternative. Its machining and forming requirements are simpler, it has a slight weight advantage, and the simplicity of fitting and welding straight line longitudinals outweighs the disadvantage of more footage of welding.
e. Honeycomb Framed Core Panels--The shelter structural arrangement using honeycomb panels for the stiffened skin is shown in Figure 4-18. This concept of providing a stiffened skin was eliminated based on a comparison of the resulting shell weight with that of a machined skin concept, as shown in the following summary.

Figure 4-18. Configuration 3B Shelter Structure Arrangement Honeycomb Design

Page Intentionally Left Blank

Weight Comparison - Honeycomb vs Machined Skin

Item		Honeycomb Framed Core Weight-1b	Fully Machined Skin Weight-1b
Skins (0.030 Equivalent) including 5 percent allowance for lands		150	150
Core - 1.5 in. thick $2 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$ density		82	---
Glue Lines - $0.10 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$		33	- ---
Edge Members - Longitudinal 52 ft at $0.75 \mathrm{lb} / \mathrm{ft}$		39	. ---
Edge Members - Radial 100 ft at $0.75 \mathrm{lb} / \mathrm{ft}$ Reduced 50 percent for frame contribution		38	--
Longitudinal and Radial Ribs 490 ft at $0.05 \mathrm{lb} / \mathrm{ft}$ Reduced 30 percent for frame contribution		- ----	17
Longeron Reinforcements 105 ft at $0.12 \mathrm{lb} / \mathrm{ft}$		---	13
	Total	342	180

2. End Done/Bulkhead

The following end done/bulkhead configurations, with and without door penetrations, were considered:

Flat-Honeycomb and Framed
Elliptical
Spherical Sector
$\xrightarrow{2}$
a. Flat Bulkhead--The use of flat bulkhead end closures for the pressure shell was rejected because of the loss of shelter volume and the weight penalty as compared to domed end closures. If the flat bulkheads were used, due to the constraints of the payload envelope form factor, the overall centerline length of the recommended configuration would be reduced to approximately 13.5 ft with a consequent volume loss of about 60 cu ft . The weight penalty for using flat end bulkheads as compared to domed ends would be approximately 60 lb :

Initially flat bulkheads, using a honeycomb or beam stiffened skins, were considered applicable for the internal airlock bulkhead based on the consideration that under emergency conditions the ΔP across the bulkhead could be opposite in direction to that of normal use and that a flat bulkhead allows maximum utilization of the separated available volumes. However, further study indicated that the use of a spherical sector internal bulkhead, suitably reinforced, would be lighter than the flat bulkhead and cause only a minor degradation of the general utility of the volume in close proximity to the dome - cylindrical shell intersection. This approach is discussed further later in this section.
b. Elliptical and Spherical Sector Domes-An investigation of the applicability of elliptical and spherical sector domes led to the selection of spherical sector domes based on the following considerations:

Spherical sector domes provide more usable volume for the restricted length of shelter available as compared to elliptical domes of reasonable eccentricities of minor to major axis, i.e., 0.3 and greater.

The requirement for the use of 0.030 in . thick skins is greatly in excess of the stress requirements imposed by pressure loads, so there is no weight advantage from the use of elliptical domes.

Spherical sector domes, unlike elliptical domes, maintain constant membrane stress which allows simpler door framing design and member installation, particularly when off-center doors are desired/required.

Ring frames, as opposed to a thickened peripheral edge radius, for the spherical sector domes are effectively free of weight penalty since they may be incorporated as part of the non-simultaneous pressure load requirements. These are the normal requirements for satisfying externally applied loads due to support of external equipment and the Shelter-LM/Truck tie-down. In addition, the ring frames can be located to match desirable locations on the LM/Truck structure (i.e., the end bulkheads) for load transfer.

Spherical sector domes are easier to fabricate by spinning or hydroforming.

The compound curvature of the domes precludes the use of fully or partially machined skins to support door framing or reverse loading on the membrane; fusion welding would be used for structural member connections to the skin.

Location of Primary Structural Elements

The investigation of locating the primary structural elements, such as frames/rings and longerons/stringers, internally or externally to the pressure shell considered potential follow-on variations of the shelter/mission as well as the considerations pertinent to the recommended shelter.

As shown by the following discussions, external location is preferred for the recommended shelter and for follow-on variations. For the candidate configurations there were no significant differences in cost, fabrication techniques, functional reliability, and weight for either location.

1. Recommended Shelter

The influence of the following considerations on the location of primary structural elements were examined:

Pressure Shell
External Equipment
Internal Equipment

Docking Ring Loads and Shelter-Truck Connection

a. Pressure Shell--The preferred fully machined skins are more easily formed into cylindrical shells with the integral stiffeners located externally; therefore the primary structural elements would also be externally located. External location of structural elements for the other concepts of stiffened single skins provides the advantage of constraining membrane and pressure loads in hoop fashion, precluding the tendency to produce tension loads across welds as would occur with internally located structural members.
b. External Equipment--The many support points required on the shelter structure for sway bracing or accommodating in-toto the loads imposed by external equipments are best provided by externally located structural members with tangential introduction of the loads at the frame/longeron intersection centroids to minimize eccentricities and bending moments.

Internally located structural elements with integral skin bosses or fittings welded to the skin would reduce the capability of accommodating changes in size and mass of external equipment. Also, the eccentricities of the load paths would require a slight increase in structural weight.
c. Internal Equipment--The loads from heavy internal equipment are primarily carried by the shelter floor and therefore by its structural supports. Internally located primary structural elements are preferred for this condition/requirement. However, externally located structural elements can provide satisfactory supports for the internal equipment. Floor support segments may be welded or bolted to integral bosses coplanar with the exterior main frames and mechanically fastened to the end dome and airlock dome compression rings. These supports carry the vertical and lateral loads and skin ties carry the longitudinal loads.

Integral bosses approximately coplanar with external frames and longerons, and light convenience frames bonded to the skin could be used to carry the loads from wall mounted equipment too high above the floor for efficient attachment to i.t.

The use of externally located structural elements also results in an inner wall surface comparitively free of protrusions thereby facilitating the in-situ movement of consoles and equipment to allow easy inspection and posisibe repair of wall surfaces.

External location allows more internal headroom and usable volume since the nominal 3 in. provided for backup sheet-bumper spacing can also be used to accommodate the radial depth of the members.
d. Docking Ring Loads and Shelter/Truck Connection--External location of structural members is preferred; the reasons given for external equipment support also are valid for these considerations. The possibility of using removable internal structure to reduce frame weights is a tradeoff of weight vs flexibility of interior shelter arrangement and crew activities; it does not alter the preference of external location of shelter structural members.

2. Shelter/Mission Variations

The shelter may be designed to accommodate the following extensions in capability:

- Transportable on the lunar surface by the addition of powered wheels. The attachment of wheel suspension is best accommodated by externally located structural elements.
- Increased shelter volume by extension of concentric, internally stowed section of the shelter. To achieve maximum internal diameters (and volume), allow for the support of the extension guides and mechanism, and accommodate adequate sealing flanges, external location of structural elements is preferred for both inner and outer sections.

Pressure Wall Penetrations

In addition to the large penetrations required by the airlock doors and docking tunnel hatch, a number: of smaller penetrations will be required for viewing ports and service lines such as fluid and electrical lines, and shelter atmosphere dump valves:

1. Airlock Doors and Docking Tunnel Hatch -

Circulár configurations for both airlock door openings are preferred to elliptical or rectangular configurations based on the following considerations:

For circular penetrations through spherical sector domes the reinforcing edge members are in-plane circular rings subjected primarily to uniform tension loads (or-under emergency conditions of reverse loading on the inboard dome, uniform compression loads) with almost no out-òf-plane forces.

AIRESEARCH MANUFACTURING DIVISION

The local out-of-plane forces in the skin where it is joined to the reinforcing ring are comparatively minor and less significant than for other shapes of openings.

The circular in-plane opening allows simple seal and door latching designs with minimum relative distortions of the seal clamping surface.

Although the "width" of a circular door is considerably greater than that required for elliptical or rectangular doors given in previous discussions and more than half the "width" of the shelter, the preferred pressure aided sealing and translational opening motion of the overboard door into the airlock can be accommodated as follows. The door opening is horizontally offset from the end dome center and the curvature of the inboard spherical dome results in a longer cylindrical wall section in the airlock.

The required clearance for the hinged inboard door is also satisfied by horizontally offsetting the door opening in the dome.

The arrangement and kinematics of flat 56 in . dia inboard and outboard doors based on the above considerations are shown in Figure 4-19. The two doors and their latching mechanisms are identical, although the loading on them can be different. Under emergency conditions of the airlock pressurized and the remainder of the shelter non-pressurized, the inboard door can accommodate a loading of 7 psi ; for the normal conditions of pressure aiding the sealing of the door the maximum (burst) loading is 11.6 psi. Each door is constructed of flat aluminum honeycomb approximately 3 in. deep with a 3.5 lb core and $0.020-\mathrm{in} .-$ thick face sheets.

The inboard door is offset horizontally 7 in . from the center of the dome and is hinged to open into the work/living area. A slotted hinge joint allows the door to translate normal to the sealing surface during latching or unlatching of the door.

The overboard door is also offset horizontally 7 in. from the center of the end dome. This door is mounted to rollers constrained in curved tracks located above and below the door opening. The shape of the tracks allows the door to translate normal to the sealing surface during latching or unlatching of the door as well as minimizing encroachment of airlock volume during the opening/closing.

In the full open position the overboard door overlaps the door opening but still provides a suitable clear opening at mid-height of 43 in .

Sealing is achieved by a multiple striker on the door contacting and preloading a silicone rubber - silastic seal mounted on the seal supporting lip of the dome opening reinforcing edge member. This location allows easy inspection of the seal and the multiple striker approach provides some protection against inadvertent contact during ingress/egress.

Page Intentionally Left Blank

Figure 4-19. Configuration 3B Airlock Door

Page Intentionally Left Blank

The door latching/seal clamping mechanism is shown in Figure 4-20. It consists of a two piece marmon type clamp with compound toggle over-center mechanisms to load, synchronize the motion, and irreversibly latch the clamp. The two-piece clamp is symmetrically located about the vertical center line of the door and provides almost full peripheral clamping.

A harmonic drive gear box, manually driven by an astronaut from either side of the door, is used to drive the latching mechanism. The harmonic drive is located in the center of the door and connected by bell cranks/links to the linkages which further load and synchronize the motions of the ends of both halves of the clamp. When the latching mechanism is 'opened,' it releases the tension in the clamp and moves each half radically outward to allow the clamp to clear the seal supporting lip on the dome.

Since normal operation of the latching mechanism can take approximately one min, squib powered actuation or squib bolts and springs to move the clamp can be used for emergency rapid opening. In either approach the differential pressure aiding the sealing would have to be reduced to probably only several psf to allow a crewman to move the door, without mechanical aids, from a sealed position.

The docking tunnel circular shape, diametral dimension and unobstructed accessibility to it from inside the shelter results in the obvious selection of a round docking tunnel hatch.

Since it is normally used only for in-flight checkout and is required to take only unidirectional pressure loads during the mission, a hatch design similar to that of the LM docking tunnel hatch would be used.

Service Lines

The service line penetrations are shown in Table 4-4. The table shows only fluid and electrical power service requirements but undoubtedly penetrations will also be required for electrical instrumentation and communications.

Bulkhead fittings such as used on LM are suitable for these applications on the shelter. A typical fluid line bulkhead fitting assembly, as used on LM, is shown in Figure 4-21. It consists of a bulkhead penetration fitting, bulkhead nut, 0-ring, and two fitting ends. Each fitting end consists of a fitting nut, seal, and female fitting to which the tubing is swaged.

A typical electrical power bulkhead fitting, as used on LM, is also shown in Figure 4-22. The individual electrical feed-throughs are hermetically sealed to the body of the fitting. Fittings for instrumentation and signal wires are similar, the primary difference is that the feedthroughs are pins on both sides of the fitting as compared to a pin and sleeve used in power fittings.

Figure 4-20. Configuration 3B Airlock Door Latching Seal Clame

AIRESEARCH MANUFACTURING DIVIIION

TABLE 4-4
PRESSURE WALL SERVICE LINE PENETRATIONS

No. of Penetrations	Hole Size (in)	Location	Wall Penetrated	Line Contents	Line Function
4	3/8"	Near ECS	CabinExterior	heat transfer fluid	cabin thermal control
3	$1 "$	near cormand and control console	"	electric leads	power
1	1/2"	near FCA	"	"	power
1	3/8"	near floor	"	potable $\mathrm{H}_{2} \mathrm{O}$	FCA water
2	1/4"	near ECS	"	'oxygen	oxygen supply
1	2 "	near ECS	"	$\begin{aligned} & \mathrm{O}_{2} \text { and } \mathrm{H}_{2} \mathrm{O} \\ & \text { vapor. } \end{aligned}$	pressure relief and $\mathrm{H}_{2} \mathrm{O}$ boiler vent line
- 1	1/4"	near floor	$\begin{aligned} & \text { Cabin- } \\ & \text { Airlock } \end{aligned}$	Oxygen	airlock oxygen supply
1	1-1/2"	near floor	"	airlock pump	airlock pump
2	1-1/4"	waist level	"	oxygen	suit ventilation
1	1/4"	floor level	"	urine	toilet drain
2	$3 / 8^{\prime \prime}$	roof level	"	heat transfer fluid	airlock thermal control
1	1/2"	waist level	Airlock Exterior	-	airlock dump
1	1/4"	floor level	"	-	odor removal from toilet
1	1/4"	waist level	"	oxygen	PLSS emergency hook-up

Figure 4-2I. Bulkhead Fluid Fitting

Figure 4-22. Bulkhead Electrical Fitting

Parallel-plane surfaces for the sealing 0-ring and fitting nut would be machined from local bosses or thick sections of the pressure walls, the smaller size fittings can be used through walls up to $1 / 4 \mathrm{in}$. thick.

In addition to the normally used airlock atmosphere dump valve line given in Table 4-4, large flow area dump valves, operable from both sides of the pressure wall, are necessary to allow rapid unloading of the pressure aided sealing of the airlock doors or docking tunnel hatch under emergency conditions. Also, to allow opening the docking tunnel hatch for in-flight checkout, a manually operable valve would be located in the hatch similarly to LM.

Typically, the penetration required for a dump valve would be significantly larger in diameter than those for the above electrical or fluid lines and the method of securing it to the pressure wall would be different. A machined flange for the sealing 0-ring and a series of blind tapped holes, radially inboard of the 0 in the valve body, would be used to mount the valve to a matching flange machined from a local boss in the pressure wall.

Viewing ports would be used to monitor activities in the airlock from the work/living area as well as to view extra shelter activities. If this latter use is supplemented with a periscope, the periscope penetration of the pressure wall would be similar to that used for the LM alignment optical telescope; namely, a flanged static seal with no requirements for rotating seal s external of the optical device.

The method of accommodating the viewing ports in the pressure wall would be the same as used on LM which is designed to take tension as well as pressure loads.

A cross-section of the viewing port is illustrated in Figure 4-23. A curved pane (1) of chemcor high strength glass is sandwiched between two edge strips '2) of Kovar with a Kovar spacer (3) bonded between them. A $1 / 16$ teflon filler (4) is inserted between the edge of the glass and the spacer to eliminate the risk of cracking due to the spacer and glass accidentally being bonded together. Kovar was used as an edgemember since it has the same coefficient of expansion as the Chemcor glass

A 2219 aluminum alloy machined frame (5) is butt welded to a cut out in the pressure wall, and the glass assembly is clamped into place with an aluminum ring (6) which is bolted to the machined frame. Sealing is achieved by two 0 ring seals (7) located in grooves in the machined frame.

A fiberglass frame (8) is bolted to the main frame assembly and carries an exterior pane (9) of Vicon (a soft glass) retained by a ring (10). The exterior pane is an optical filter and the space between it and the chemcor glass is vented.

PAYLOAD DEPLOYMENT

The proposed operational use of the shelter payload requires the majority of the scientific equipment and the LSSM to be deployed to the lunar surface,

AIresearch manufacturing division

Figure 4-23. Cross Section of Viewing Port

Book 1

and the subsequent crew activities to accomplish the mission operations require several cycles of shelter ingress/egress per day.

In satisfying these requirements, the as landed attitude of the LM/Truck and the height of the shelter payload above the lunar surface are of primary importance.

The as landed attitude and conditions specified by the study guidelines (Reference 1) are:

I8 deg maximum slope of the LM/Truck horizontal plane relative to the local horizontal plane

5 deg general slope of the local lunar surface
18 deg maximum truck slope based on a landing leg primary compression stroke of a maximum of 25 in . and a local 24 in . protrusion or depression of the surface at the landed position

The as landed attitude and conditions are shown in Figures 4-24 and 4-25 for the two extremes of landing leg orientation relative to combined slope of 18 deg. Figure 4-24 illustrates the diamond pattern in which diagonally opposite legs are aligned along the direction of the slope; Figure 4-25 illustrates the square pattern in which adjacent legs are aligned along the direction of the slope. Although the LM/Truck slope is 18 deg for both orientations, the square pattern necessarily has less resistance to overturning than the diamond pattern; for leveling methods utilizing actuators integral with or attached to the landing legs the strokes are longer for the diamond pattern.

To eliminate the possible degradation of crew performance caused by operating in an off-level shelter, the shelter must be leveled to a maximum of 3 deg with respect to the local horizontal. Achieving this nominal horizontal attitude from a maximum of 18 deg off-level could result in the LM/TruckShelter payload interface being a maximum of approximately 12 ft above the lunar surface.

The study of payload deployment was divided into the following categories:
Shelter azimuth orientation and unloading
Shelter leveling
LSSM unloading
Scientific equipment unloading
Crew access

REFERENCE PLANE
FOR UNSTROKED
LANDING GEAR

Figure 4-25. LM Truck As-Landed Square Pattern

Shelter Azimuth Orientation and Unloading

The ground rules noted below were followed for this deployment category:
Shelter to be unloaded to the lunar surface with all internal and external equipment (stored in the primary payload envelope) in place

Accommodate the as landed attitude and conditions specified by the study guidelines (no preleveling required)

Provide capability of 360 deg azimuth orientation to allow selection of most suitable area to deploy shelter

Flight and landing loads on shelter not carried by the unloading system

Methods of unloading the shelter using devices supported only by the LM/Truck were eliminated, since the moment exerted by the shelter on the truck, when the shelter is clear of the truck and the as landed attitude and 360 deg orientation ground rules are satisfied, would cause the LM/Truck to overturn.

An investigation of various combinations of turntables and folding or telescopic ramps simply supported by the LM/Truck and the lunar surface showed that a system consisting of an azimuth turntable and folding ramps was the most compatible with the existing payload configuration, was simple to operate, offered high reliability, and was lightest in weight. The method of folding the ramps and the turntable arrangement are similar to that described in NASA study report ALSS-TR-03I Volume II Book 8.

The selected azimuth orientation and unloading system is shown in Figure 4-26.

In general, it consists of two assemblies, one for azimuth orientation and the other for unloading. After the release of the shelter payload to LM/ Truck tiedowns, the shelter paylaod is supported by four roller/guide shoes located near the intersection of two of the lower longerons and the end dome/ cylinder compression rings. These roller/guide shoes are in contact with the two sections of the unloading ramp resting on the azimuth orientation turntable; these sections are connected by pivot pins to two legs of an A-frame connected to the turntable.

The turntable has a 70 in . outer dia and is constrained by eight roller assemblies which are supported from the LM/Truck cruciform beams. Each roller assembly has two horizontal rollers to react the shelter vertical loads and one vertical roller to keep the turntable centered about a vertical axis. Turntable rotation is provided by an electric motor operated capstan driving a wire rope cable wrapped around the turntable.

The unloading ramp consists of two arms, structurally cross braced, each having four sections which are hinged to facilitate stowage as shown in Figure 4-26. The outboard ends of the ramp arms are connected to a common ball and socket mounted bearing pad.

Page Intentionally Left Blank

'A' FRAME ATTACHED AT
4 POTNTS TO TURNTABLE ramp rilit restraining RAMP TILIT RESTRA
CABLE WTTH MOTOR
DRIVEN CAPSTAN

IURNIABLE CABLE
\& CARNIABLAN CABLEE
TURNTAB
DRIVE

Page Intentionally Left Blank

The previously mentioned A-frame connected to the turntable provides the pivot about which the ramp can tilt and reacts the cable load for controlling the angular rate of tilt.

Although Figure 4-26 shows the unloading of the shelter from a horizontal attitude, the same sequence of events would be followed if the LM/Truck were tilted up to 18 deg, the only difference being in the angle of tilt of the unloading ramp when it is in contact with the lunar surface.

Referring to Figure 4-26, the unloading sequence is as follows:
Sketch 1 The shelter is shown with its unloading ramps in the stowed position after the shelter tie-down fittings have been released.

Sketch 2 After azimuth rotation of the shelter to the most suitable position for unloading, the turntable is retained in that position by a power-off disc brake on the driving capstan. The ramp tie downs to the shelter are then released by squibs and the ramp sections are automatically unfolded to an extended position by springs at the ramp section hinges. When extended, the ramp sections are automatically locked together by spring loaded pins.

Sketch 3 An electric motor driven capstan mounted on the underside of the shelter moves the shelter along a cable connected between the inboard and outboard ends of the ramp. The shelter is moved outboard along the ramp until its cg is outboard of the ramp pivot point. The ramp is then allowed to tilt until the bearing pad at the outboard end of the ramp contacts the lunar surface: The rate of tilt of the ramp is controlled by a cable unreeled from a motor driven winch mounted on the end of the A-frame opposite the ramp pivot; the controlling cable is connected to the inbuard end of the ramp. After tilting of the ramp is completed, the shelter is moved to the end of the ramp where spring loaded pins lock the shelter to the outboard sections of the ramp. The cable used to move the shelter along the ramp is then severed/disconnected from the inboard end of the ramp, thereby disengaging from the capstan.

Sketch 4 A pair of winches are in-situ pin connected inboard of the hinges of the last section of the ramp, and their cables are connected to the ramp sections supporting shelter. The hinged connection is then severed/disconnected. The cables from each winch are independently controlled to lower the shelter to an approximately horizontal attitude. In this position, adjustable length legs are socketconnected near the disconnected ends of the ramp sections supporting the shelter. The two support legs are adjusted in length and the suspension cables further lower the shelter until the legs support and stabilize the shelter in an approximately horizontal attitude. Manual overrides are incorporated in all powered drives.
alresearch manufacturing division

The weight penalty for this system is summarized below:

	$1 b$
Azimuth orientation assembly	65
Ramp and support structure	238
Ramp tie-downs and release	8
Ramp tilt restraint mechanism	9
Shelter rollers and brackets	15
Ramp arm lowering mechanism	10

Shelter Leveling

The shelter can be leveled to within the specified maximum of 3 deg off the local horizontal by leveling the LM/Truck or leveling only the shelter leaving the LM/Truck in the as landed attitude.

For the latter approach the externally located equipment and consumables directly related to shelter operation and connected to it by electrical and fluid lines were considered as an integral part of the shelter.

Also, to minimize leveling subsystem weight, it does not carry the flight: and landing loads on the shelter.

1. Leveling the LM/Truck

Previous studies of leveling an LM descent stage (Reference 8) concluded that the use of linear actuators between the descent stage/SLA truss and the lunar surface was preferred over the other methods studied, namely, pneumatic bags with adjustable blocking struts, A-frames and derrick type rigs, partial landing gear disassembly and rerigging, and jacking provisions built into the descent stage.

Since the as landed attitude and amount of correction required are less severe for this study, the above approaches were reconsidered and the recommended approach was not routinely adopted. In addition to satisfying the more severe correction requirements, its design concept was based on no modifications to the LM landing gear and consequently resulted in a fairly large mechanism.

For this study, which does not have the above constraint, the more desirable approaches of leveling the truck are those utilizing the landing gear legs to support or house leveling devices as discussed in the following paragraphs.

Electrically powered screw jacks were selected as actuators over hydraulic or pneumatic cylinders primarily because of the 6 -month quiescent storage and the comparative ease of supplying electric power to an actuator inside the landing gear cylinder. However, no detail comparison of actuators was performed since it is beyond the scope of this study.

Technique No. I consists of the use of screw jacks housed in the lower cylinders of the four landing legs. The lower cylinders would have to be redesigned to provide a guiding surface for the jack extension and to react the jacking loads. The jacks would not carry the landing loads, but would utilize the landings pads as bearing pads during leveling; this requires a redesign of the pad support-to-landing leg connection to allow in-situ disconnection.

The jack strokes and the maximum lateral scuffing motion of the pads to accomplish leveling of the shelter are shown in Figure 4-27. A length of about 61 in. is available within the landing gear cylinder, when the gear is in a compressed position, to house the screw jack. This avallable length limits the stroke of a single stage actuator to approximately 48 to 50 in. Therefore a two state screw jack would be required.

Technique No. 2 consists of a screw jack arrangement in each landing leg cylinder similar to that of Technique No. I, but, as shown in Figure 4-28, it only requires a stroke of 48 in . and imposes negligible lateral motions on the landing pads. This is achieved by in-situ disconnecting/severing the locking geometry of the secondary landing struts and the uplock to allow the landing legs to pivot about points A. Although this provision must be incorporated in the four legs, only the locking geometry on the leg requiring the maximum stroke and one adjacent to it need be freed to reduce the lateral scuffing to a negligible amount. Tension ties are manually installed between diagonally opposite legs to preclude outward slippage of the pads when the legs are free to pivot.

In Technique No. 3, three single stage screw jacks are stored in the shelter payload envelope and are in-situ mounted to fittings located on the lower end of the landing leg upper cylinders. Therefore, compared to Techniques I and 2, this approach requires the minimum amount of modification to the landing gear.

Since the jack pads must clear the landing pads, they can be mounted radially inboard of the landing leg pads and thereby require a maximum stroke of only 45 in . as shown in Figure 4-29.

To permit some selection of jack bearing pad location on the lunar surface, the fittings on the leg upper cylinder have multiple locations for accepting the jack brackets and the jacks may be inclined several degrees off vertical at the initiation of the leveling operation. During the leveling operation the jacks are allowed to pivot in their brackets thereby reducing lateral scuffing to a negligible amount.

AIRESEARCH MANUFACTURING DIVISION

67-1964-6

Book 1

Figure 4-27. LM Truck Levelling Technique No. 1

Figure 4-28. LM Truck Levelling Technique No. 2

Figure 4-29. LM Truck Levelling Technique No. 3

2. Leveling. Only the Shelter

The recommended method for leveling only the shelter is shown in Figures 4-30 and 4-31. It consists of an azimuth orientation turntable, two shelter support beams, and a single axis actuator to tilt the shelter about the support beam pivots.

Other concepts which were investigated included jack screws mounted at the inboard intersections of the LM/Truck beams and two axis gimbal arrangements using parallel motion linkages, ball and socket support of the shelter, and multiple actuators for raising the shelter to provide clearance and subsequent two axis leveling. In general, these concepts were either excessively complex or could not be housed in the available volumes.

The sequence of operation and a description of the recommended system is discussed in the following paragraphs.

Assuming a severe shift in payload and truck cg could occur due to mission operations, prior to leveling the shelter, a manually adjustable length column can be placed under an off-surface leg to stabilize the truck, as indicated in Figure 4-30.

After the release of the shelter to LM/Truck tie-downs, the shelter is supported near the intersection of two of the lower longerons and the airlock end dome/cylinder compression ring by two pivot fittings on the shelter support beams and by the tilt jack screw located below the floor level at the middle of the shelter. The two support beams are attached to the turntable. The turntable assembly and method of support from the LM/Truck are similar to that described for use in shelter payload unloading. The shelter is rotated by the capstan driven turntable until the airlock end of the shelter faces in the up hill direction of the as landed slope; the shelter is retained in that position by a power-off disc brake in the capstan drive. The shelter is then off-level about only one axis. The jack screw between the shelter and a torque tube connecting the support beams is extended to tilt the shelter to the specified nominal horizontal attitude.

As in shelter unloading, all actuators for this system have manual overrides.

Subsequent to leveling, the capstan driven turntable can be used to provide shelter azimuth orientation but with the drawback of having nutation about a vertical axis rather than rotation.

3. Preferred Method of Shelter Leveling

The preferred method of leveling the shelter is by leveling the LM/Truck using Technique No. 2, screw jacks integral with the landing legs and allowing the legs to pivot to preclude lateral motion of the pads.

AIRESEARCH MANUFACTURING DIVISION

Figure 4-30. Shelter Levelling/Truck As-Landed

Figure 4-31. Shelter Levelling Mechanism

Page Intentionally Left Blank

The following criteria were used in comparing the various leveling methods:

In-situ surface activities required
Dependence on local surface characteristics/conditions
Weight penalty
Effect on shelter payload complement
The differences in mechanism reliability, costr and fabrication requirements were second order terms for the purposes of this study.

Using the above criteria the preferred method was selected based on the following considerations.

Technique No. 1 although requiring a minimum of in-situ surface activities for the activation of the leveling subsystem was most dependent on local surface characteristics/conditions since the pads move laterally during the leveling operation. The maximum leveling stroke of 58 in . and the necessity for a two-stage jack in each leg results in the highest weight penalty of 225 lb ; the other methods have weight penalties of approximately 100 lb .

Technique No. 2 requires only an in-situ surface activity to latch tie straps between diagonally opposite pairs of landing pads/legs, and, since no lateral pad motion occurs, it is independent of the local surface characteristics/conditions.

Technique No. 3 requires the greatest amount of in-situ activity to mount the leveling jacks to three of the landing legs. Since the jacke have their own surface pads and the choice of bearing area is limited, this system is dependent on local surface characteristics but to a much smaller degree than Technique No. I; pad lateral motions are considerably smaller or negligible depending on the azimuth position of the jack relative to the landing leg.

The concept of leveling only the shelter is independent of the surface characteristics/conditions and requires the least in-situ surface operations for the actual leveling operation. However, since the shelter moves relative to the truck, external equipment supported jointly by the shelter and truck and/or in a location which prohibits the motion must have its structural ties disconnected/severed from the truck and be supported completely by the shelter and/or be unloaded in the as landed attitude.

The requirement for disconnectable/severable supports and a redundant supporting mode for the external equipment to allow leveling not only increases the complexity and weight of the supporting structures, it also reduces the flexibility of accommodating changes in external equipment. As discussed later, the methods of unloading the LSSM and scientific equipment are independent of the as landed attitude, however, unloading from a leveled payload is simpler and less arduous for the crew. Furthermore, the nonpredetermined final
position of the shelter relative to the truck severely reduces the possibility of using truck mounted supports for inspection/maintenance of the shelter and external equipment.

LSSM Unloading

As stated previously, the LSSM storage configuration was considered as a rigid structural unit with its suspension system locked out and the wheel's deflected by a self contained force system.

The ground rules noted below were followed for this deployment category:
Flight and landing loads on the LSSM not carried by the unloading system

Accommodate the as landed attitude and conditions specified by the study guidelines (no preleveling required)

Initial studies showed that because of the gross size, mass and location of the LSSM in the payload, as compared to the scientific equipment, the use of two separate systems for unloading the LSSM and scientific equipment would result in a lower total weight and less in-situ activities.

The methods which were considered for unloading the LSSM included overhead cranes, ramps; and parallel motion linkages either separately or in combination.

The possibility of providing 360 deg azimuth orientation for unloading the LSSM independently of rotating the total shelter payload was ruled out because of excessive size and weight of the system. To clear other components of the shelter payload and the truck legs, it would require a boom about 17 ft long mounted on a turntable near the docking tunnel.

The recommended method of unloading the LSSM is shown in Figure 4-32. It consists of an A-frame to control the outboard positioning of the LSSM, a compression strut to pivot the A-frame, and a motor driven capstan wire rope arrangement to control the A-frame motion and lower the LSSM.

The A-frame is supported at its lower end by two pivot fittings connected to the LM/Truck cruciform beams, and near its outer end by a small truss connected to the shelter structure. One end of the compression strut is pinned to the A-frame above the pivot fittings and the other end pinned to a guide in a housing mounted on the LM/Truck beam. The motor driven capstan is mounted on the shelter near the docking tunnel. In the as launched configuration the hinged outer end or extension to the A-frame above the shelter support is folded to fit within the payload envelope.

In reference to Figure 4-32, the unloading sequence is as follows:
Sketch I The LSSM with its deployment mechanism is shown stowed in the as landed position.

Page Intentionally Left Blank

Sketch 2 The A-frame extension tie-down is released and a spring rotates the extension until it is coplanar with the rest of the A-frame under the LSSM chassis; a spring loaded sleeve slides over the rotation joint to lock it. The LSSM in-flight tie-downs to the LM/Truck are released, and the capstan driven cable raises the LSSM along the A-frame until stabilizing forks on the upper end of the LSSM engage a cross bar at the end of the A-frame. The LSSM is constrained to the straight parallel sections of the A-frame by guide shoes which allow relative motion only along the length of the frame until the cross bar is engaged. As the forks engage with the cross bar, they trip spring loaded catches which allow the LSSM to rotate about the longitudinal axis of the.cross bar.

Sketch 3 The A-frame is squib released from its tie-down to the support truss. The spring loaded compression strut rotates the A-frame outboard, the rate of rotation being governed by the rate at which the suspension cable is paid out. The resulting LSSM angular motion about the A-frame pulley cross bar is damped by a wire snubber. The A-frame rotation continues until a guy wire from a hardpoint on the shelter to the tip of the A-frame is taut. This releases the spring loaded catches holding the LSSM stabilizing forks to the A-frame pulley cross bar and the LSSM is held now only by the suspension cable. The controlling length of the guy wire is in-situ adjusted as a function of the as landed attitude.

Sketch 4 The LSSM is lowered by the suspension cable until its stabilizing forks are clear of the A-frame. The forward wheel deflection straps are released, and the LSSM may be rotated about the axis of the suspension cable by an astronaut standing on the surface until it faces the most suitable position for unloading.

Sketch 5 The LSSM is lowered by the suspension cable until its leading wheels rest on the surface. These wheels are then energized or allowed to free wheel while the suspension cable continues to lower the LSSM until all wheels contact the surface. The suspension cable is then removed from the LSSM chassis.

The fitting holding the LSSM in a contracted configuration may be released just prior to the aft section contacting the lunar surface.

The estimated weight for this method of unloading the LSSM is 40 lb .

Scientific Equipment Unloading

The lunar weight of the individual scientific equipment packages is within the lifting and carrying capabilities of a suited astronaut. However, the shape or bulk of some of the packages combined with their locations in the payload envelope would require the astronaut to assume precarious positions if equipment were unloaded without any mechanical aids.

AIRESEARCH MANUFACTURING DIIIIION

The majority of the equipment storage locations are directly accessible from above and therefore the equipment could be easily removed by an overhead hoist. The few packages between the lower section of the shelter and the truck beams are sufficiently low in weight to allow complete manual unloading or positioning them for mechanical unloading.

With the air of an overhead hoist, each container/frame housing experiment package can be removed as a unit, thus reducing the number of unloading operations.

A simple portable manual/motorized jib boom hoist mountable in sockets at any of four positions on the shelter provides sufficient coverage with a 66 in . boom to unload all the scientific equipment. Its operation can be controlled locally at the mast or from other positions by an electric cable-connected control box. The jib boom hoist, in an installed position on the shelter, is shown in Figure 4-33.

The boom is hinged to the top of the mast to allow folding for initial storage in the payload envelope and subsequent ease of repositioning at any of the four positions on the shelter.

The estimated weight of this unloading arrangement is 3 l lb.

Crew Access

The requirements/ground rules to be satisfied by the crew access system are:

Provide for initial entry into the shelter in the as landed attitude
Provide for crew and equipment transfer between the shelter and the lunar surface during normal mission activities

Provide accessibility to scientific equipment to facilitate unloading
Provide for transfer of incapacitated astronaut between lunar surface and shelter

Provide access to the exterior of the shelter paylaod for inspection/ maintenance

Methods of providing crew accessibility by means of inclined ramps, inflatable staircases, mechanized lifts and simple ladders were investigated. The recommended approach consists of using two ladders and the scientific equipment jib boom to satisfy the above requirements/ground rules. Initial entry to the shelter would be by means of a portable extendible ladder which is initially located on the LM/Truck face. As shown in Figure 4-24, if the truck lands such that the airlock is in the four leg position, a fixed ladder on that leg may not be accessible to an astronaut from the surface. However, a multisection ladder stored on an LM/Truck face would be accessible.
aIRESEARCH MANUFACTURING DIVISION

Figure 4-33. Equipment Unloading Device

Following detachment and extension of the ladder, its upper end would be latched into a connector on the truck below the airlock door, and its lower end placed in contact with the lunar surface. After climbing the ladder, the crewman releases a folded access platform below the airlock door, steps on the platform and proceeds to open the airlock door.

After the truck is leveled, a second multisection ladder is deployed from the access platform to the most suitable location on the surface and is used for all normal ingress/egress during the mission. The portable ladder which had been used for initial entry is therefore free to provide accessibility to the scientific equipment and for shelter payload inspection/maintenance. Areas which are inaccessible with the portable ladder are reached by means of a small platform which is supported and positioned by the equipment unloading hoist.

An emergency litter, foldable for storage, can also be attached to the hoist to carry an incapacitated crewman between the surface and the shelter airlock.

The estimated weight for the crew access system, exclusive of the equipment unloading hoist, is 64 lb .

RADIATION AND MICROMETEOROID PROTECTION

The radiation and micrometeoroid environments in space influence the design of manned lunar shelters since weight penalties; dependent on mission time and the probability of not receiving or exceeding specified limits of detrimental effects, are required to militate against the hazards associated with these environments. The probability aspect is particularly important since the number of hazardous events encountered is assumed to be proportional to the elapsed exposure time.

The micrometeoroid model environment and the penetration criteria as specified by NASA for LM and AAP missions were used for this study.

The radiation environment model as specified in the NASA TN D-2746 (Reference 3) was used since LM data does not extend to the mission duration considered in this study.

Radiation Analysis

The radiation sources potentially harmful to the lunar shelter personnel and equipment are solar flares; galactic cosmic rays, lunar surface radiation, solar wind, and nuclear power sources. .For this phase of the study it was assumed that the power source would have adequate self-shielding and therefore not contribute any weight penalty to the radiation protection required. Of the remaining four sources, the galactic cosmic rays, lunar surface radiation, and solar wind are negligible when compared to the solar flare proton fluxes. Therefore, protection analyses were based on the solar flare environment and the total dose criteria as specified by the NASA work statement (Reference 2). Parametric studies have been performed to determine shield weight as a function of probability of not exceeding the specified dose limitations, dose to

Airesearch manufacturing division
the blood forming organs and skin, and exposure time. The protection provided by refuge arrangements utilizing internal equipment and supplies, and supplementary water blankets is discussed in this section.

1. Solar Flare Protection Requirements

For manned missions, the radiation reliability was taken as the probability that the biological dose to the crew during the mission would not exceed the emergency limits. This is specified by the NASA study work statement to be 500 Rad for the skin and 200 Rad for the blood forming organs. Using the data from NASA TN D-2746 (Reference 3), the effect of radiation protection and total mission time on the biological radiation reliability is shown in Figure 4-34.

As an example of its use, consider a shelter radiation refuge with wall and roof area A ($s q f t$), then the weight of the refuge in pounds for a particular staytime, probability, and dose is 2.04 At , where t is the equivalent gram/ cm^{2} of aluminum. For the refuge shown in Figure 4-8, which has 105 sq ft of wall and roof area, and an average equivalent shield thickness, t of $10.3 \mathrm{gm} /$ sq cm , the total equivalent aluminum weight of shielding is 2205 lb . If this is used to provide a shield of uniform thickness, the probability of not exceeding the specified doses for a 50 -day stay time is less than 0.999 . To achieve a 0.999 probability of not exceeding the specified BFO dose, which at a 50 -day stay time is the more critical, the equivalent weight of aluminum shielding would have to be increased by 365 lb . However, it is highly improbable that the equipment and supplies available for shielding can be arranged to provide a uniform shield. The radiation weight penalty, therefore, is that weight necessary to bring all surfaces equivalent to the average shield thickness \bar{t} for a given stay time, probability, and dose.

Since it is difficult to fix physiologically a value beneath the specified skin and BFO emergency doses, and psychologically an area of comfort, one can consider two approaches to the problem of designing a radiation refuge. One approach would be to tradeoff dose and weight to the point where the weight becomes unacceptable, and the dose level is appreciably under that which has been specified. If the dose were sufficiently under that specified, consideration might be given to continuing the mission once the solar flare has passed. The second approach is to determine the desired protection for a single large flare and design the shield for minimum comfort and minimum weight for a given dose, probability, and stay time. The following paragraphs discuss these two approaches and present the parametric curves for trading-off shield weight, probability, stay time, and dose.

The dose is computed by obtaining from the model environment the solar proton probability fluxes for five different mission durations at two-week intervals, converting the fluxes from a 30 MEV to a 100 MEV particle cut-off energy, and finding the thickness of aluminum needed to yield a particular dose (Reference 9). Shown on Figures 4-35 through 4-39 are the skin and BFO doses as a function of aluminum thickness and probability for various stay times. The dose includes an estimate of the contribution from secondary particles and are for one-half the free space flux. The lunar surface is assumed to shield the remaining one-half of the free space flux. For the BFO curves, the equivalent aluminum shield thickness is in addition to the $5-\mathrm{cm}$ protection afforded by the skin.

AIRESEARCH MANUFACTURING DIVIIION

Figure 4-34. Solar Flare Protection

Figure 4-35. Solar Flare Radiation Shielding, 4-Week Exposure

Figure 4-36. Solar Flare Radiation Shielding, 6-Week Exposüre

Figure 4-37. Solar Flare Radiation Shielding, 8-Week Exposure

Figure 4-38. Solar Flare Radiation Shielding, 10-Week Exposure

Figure 4-39. Solar Flare Radiation Shielding, 12-Week Exposure

A refuge, which is enclosed by walls constructed of internally stored equipment and supplies, may be estimated in terms of its equivalent worth of aluminum thickness. For this value a dose is determined from the appropriate curves depending on the exposure period. Because each wall has its own slab thickness the total protection of the refuge is a sum of each wall weighted by the solid angle it subtends. If the total protection is insufficient, water panels can be added to attain the desired dose level. It is the weight of these panels that is traded off against probability and dose to achieve an acceptable reliability rating for completing a successful mission. If the panel weights are maximized to the payload constraint, and the dose is still evaluated to be too high, mission length and reliability can be traded off to lower the dose level.

The second approach is to determine the protection for a single large flare and design a shield to enclose a minimum volume. This would provide the minimum control requirements to the crew. However, if a flare were to occur that was of smaller magnitude then designed for, the mission may continue rather than be aborted. Shown on Figure $4-37$ is the 0.95 skin dose curve, for a giant flare assumed to have an integrated intensity of protons, having energies greater than 30 MEV , of 2×10^{9} per sq cm . The probability that the crew will receive such a flare on any day is 0.001 , and the probability for any number of days, T, is simply 0.001 (T).

It is readily apparent that this approach reduces the dose by a substantial amount. But it also considerably reduces the probability that a long mission will be completed. For example, an 8 -week mission has less than a 0.95 chance of not seeing a giant flare.

2. Radiation Refuge

The two refuges shown in Figure 4-40 are based on the design condition of 50-days stay time shown in Figur 4-34 and using internally stored supplies and equipment in conjunction with water filled polyethylene blankets for shielding. The water filled blankets, holding the LiOH cartridges in sleeves, would be contoured in thickness such that the combined worth of the depth of the circular cross section LiOH and water blanket at any particular point is a constant. The austere volume of the quonset hut arrangement requires about 300 ib of water blanket to provide 8 gm per sq cm equivalent Al thickness protection. The seated arrangement, which allows the crew comparatively high freedom of movement, requires about 650 lb of water blanket to provide $8 \mathrm{gm} / \mathrm{sq} \mathrm{cm}$ equivalent Al thickness protection. The surrounding shelter wall structure provides an additional 2 gm per sq cm equivalent Al thickness for either arrangement. The net weight penalties are the above weights minus the water on board at the beginning of staytime.

Micrometeoroid Analysis

To provide a means for comparing various meteoroid protection designs NASA has specified, for LM and AAP missions, a mathematical description of the micrometeoroid particles present within the near-earth, cislunar, and near lunar regions, and has prescribed the mathematical criteria to be used in

SECTION A-A

Page Intentionally Left Blank

determining their penetrating capabilities. The following sections describe the use of this data in determining an optimization technique for the micrometeoroid protection, present a meteoroid probability assessment for the recommended shelter, and discuss the applicability of materials for protection and possible self-sealing techniques.

1. Optimization of Micrometeoroid Protection

Micrometeoroid protection requirements have been specified as 0.997 probability that the structure will not be penetrated during its lunar mission. This probability is the product of two others; the probability of no penetration by a primary meteoroid and the probability of no penetration by a secondary meteoroid. These secondary particles are of a much lower velocity and are what is more commonly referred to as ejecta particles. Because they strike the vehicle at all angles they are defined as being random and isotropic. The optimization procedure results primarily from (1) operating in these two different kinds of micrometeoroid environments; one composed of high velocity particles, the other low velocity particles, each having their own penetration criteria, and (2) specifying that the protection configuration and its reliability requirement are held constant throughout the mission. Because the environment being considered is primarily composed of high velocity particles only, a spaced bumper-backup sheet configuration is used and the AAP penetration criteria used for the bumper selection.

The optimized or minimum shield thickness occurs when the reliabilities apportioned to each environment result in the same shield weight, or thickness. The argument to support this is best expressed in terms of Q, the unreliability. Because the sum of the apportioned unreliabilities must equal the specified Q, an increase in either apportioned Q means a compensating decrease in the other apportioned Q, and since the unreliability is inversely proportional to skin thickness, any decrease in an unreliability means an increase in the corresponding skin thickness.

Based on the foregoing rationale and the analytical approach specified for the Apollo program (References 10 and 11), a set of curves for rapidly estimating the required meteoroid protection is shown on Figure 4-41. The specified value for Q is found on the ordinate, and a line may then be drawn across the plot from this point. A value for the total shield thickness ($\Sigma \mathrm{t}$) is selected for a first estimation, and a line may then be drawn vertically from this point on the abscissa. Where this line crosses the straight line plotted for the secondaries is the value of Q_{s} apportioned to secondaries. Subtracting this value from Q gives, Q_{p}, that portion of Q assigned to the primaries. The intersection of the line drawn horizontally from Q_{p} with the vertical line from the first estimates value for t gives the primary shielding configuration. If the spacing is larger than that desired, or if less shielding is desired, successive choices of Σt are tried until a combination of Q_{s} and Q_{p} is found which gives the minimum Σt.

When the chosen AT, referred to as (AT) c, is different than the one used to obtain the curves, the chosen Q_{c} is normalized to Q_{n} by multiplying it by the ratio of the two AT values as shown on the plot. The above procedure is then executed using Q_{n} instead of Q_{c}.

For an example, use the nominal ELS values of 0.003 for Q_{c}, an effective area of 260 sq ft , and a mission length of 230 days. Then, $(\mathrm{AT})_{c}=6 \times 10^{4}$ sq ft-days and Q_{n} from the formula on Figure $4-41$ equals 0.00075 . This line is shown on the curve. A minimum shielding thickness is given by the point of intersection of this line with the straight line for the secondaries. Et for this point is 53 mils. Starting with a 3 in . bumper spacing, a first try might be where this line intersects the secondary line. For this point,

$$
Q_{n}=Q_{s}+Q_{p}=0.00044+0.00044=0.00088
$$

and $\Sigma \mathrm{t}=60 \mathrm{mils}$.
Maintaining this Σt would require an enlargement of the bumper spacing in. order to reduce Q_{p} to,

$$
Q_{p}=Q_{n}-Q_{s}=0.00075-0.00044=0.00031
$$

The required spacing is therefore $3-1 / 2$ in. If larger spacing were tolerable, then Q_{5} could be increased, which would result in a reduced Σt.

If a spacing of 3 in . is desired, then a second guess for Σt might be 70 mils. But for this value,

$$
Q_{p}=0.00034 \text { and } Q_{s}=0.00024
$$

This gives too severe a Q_{n} (equal to 0.00058). Very quickly one can see that for the correct Q_{n} the combined thickness must be:

$$
\Sigma \mathrm{t}=64 \mathrm{mils}
$$

Therefore the combined thickness of 64 mils is optimum for a bumper and backup sheet with no material in the spacing. Because a 15 mil bumper will satisfy the entire range of stay times projected for ELS missions, this thickness may be kept constant for the bumper. The backup skin thickness then becomes

$$
\mathrm{t}=64-15=49 \mathrm{mils}
$$

These requirements can be considerably reduced by consideration of foam in the spacing and a fibreglass bumper instead of the aluminum. This is discussed under bumpers and spacers in the materials discussion.

Figure 4-4l. Micrometeoroid Protection Optimization

2. Probability Assessment of the Recommended Shelter

This analysis determines the probability of the recommended shelter successfully completing its mission. The mission was divided into two phases: a storage phase lasting six months plus three days for transit and a manned phase lasting. 50 days.

Effective areas for the shelter were obtained by neglecting the docking hatch and estimating how much of the smooth cylinder was shadowed by externally stored equipment. The shadow shielded areas and the various external components are:

40 sq ft	Descent stage
61	ECS and FCA radiators
35	Tanks
11	FCA
6	PCE and EE
50	LSSM
14	Scientific Equipment

The effective areas are 1 so a function of the mission phase and the environment. During the manned phase, the last three items above will be removed from the payload, and the airlock will act as a bumper for the remainder of the shelter. Therefore, the airlock and one end of the cabin was not included in the analysis. It was also assumed that the men spend all their time in the work/living and sleep/rest sections of the shelter.

The above considerations result in three reference areas from which the various effective areas are determined by subtracting from the applicable reference area the appropriate projected areas of the externally stored components. The three reference areas are: total internal area of the shelter ($440 \mathrm{sq} \mathrm{ft)} ,\mathrm{internal} \mathrm{area} \mathrm{of} \mathrm{the} \mathrm{work/living} \mathrm{and} \mathrm{sleep/rest} \mathrm{sections} \mathrm{of} \mathrm{the}$ shelter (390 sq ft), and the internal area of the latter minus the airlock bulkhead (340 sq ft).

The following table presents the results for a $15-\mathrm{mil}$ bumper spaced 2.5 in. from a $30-\mathrm{mi}$ l backup sheet and does not include the attenuation effects of a spacer material such as foam.

$$
\left(t_{B}=.015 \mathrm{in}, \mathrm{~s}=2.5 \mathrm{in}, \mathrm{t}_{\mathrm{b}}=.030 \mathrm{in} .\right)
$$

	Storage Phase				Manned Phase			
Environment	$A_{\text {eff }}$	Q	P_{0}	$P_{0,1}$	$A_{\text {eff }}$	Q	P_{0}	$\mathrm{P}_{0,1}$
Primary	233	$\therefore 00440$. 99560	. 9999902	218	. 001150	. 998850	. 9999993
Secondary	284	. 00665	. 99335	. 9999780	308	. 001754	.998246	. 9999984
Combined		. 01105	. 98895 .	. 9999348		. 002904	. 997096	. 9999956

The symbols used in the table are:

$$
\begin{aligned}
& A_{e f f}=\text { the effective area } \\
& Q=\text { the probability of one or more punctures } \\
& P_{0}=\text { the probability of getting no punctures } \\
& P_{o, l}=\text { the probability of getting no more than one puncture }
\end{aligned}
$$

The results show that tremendous gains in reliability are made if just one puncture is allowed. A natural counterpart of this is that more than one puncture is extremely unlikely; one chance in fifteen thousand for the storage phase, and one chance in two hundred thousand for the manned phase.

If one assumes that the mission will be continued should the puncture occur during the storage phase, than the probability of mission success is:

$$
P_{m s}=P_{o, 1}^{s} \times P_{o}^{m}=0.9999348 \times 0.997096=0.997031
$$

If a puncture is not permitted during the storage phase, the mission success is:

$$
P_{m s}=P_{o}^{s} \times P_{o}^{m}=0.98605
$$

To raise this to 0.997 would require a $30-\mathrm{mil}$ increase in the backup skin thickness to 55 mils . This would result in an $185-1 \mathrm{~b}$ weight increase. As discussed previously, these requirements can be considerably reduced with the addition of foam between the bumper and backup sheets. These effects are discussed below.

3. Materials Discussion for Meteoroid Protection

For backup sheet thicknesses, four materials (berylluim, magnesium, titanium, and stainless steel) are compared by weight to aluminum by using the penetration criteria as specified for AAP missions:

$$
t_{b}=\frac{42 \mathrm{~m} v}{\mathrm{~s}^{2}}\left(\frac{70,000}{\sigma 0.7}\right)^{1 / 2}
$$

where $s=$ spacing between the bumper and the backup sheets.
$\sigma 0.7$ is the compression yield stress in psi equivalent to 0.7% of strain.
The weight comparison is made by forming the ratio:

$$
\frac{W}{W_{A I}}=\frac{\rho t_{b}}{\left(\rho t_{b}\right)_{A I}}=\frac{\rho}{\rho A 1}\left(\frac{\sigma A I}{\sigma}\right)^{1 / 2}=\frac{\rho}{0.101}\left(\frac{70,000}{\sigma}\right)^{1 / 2}=f
$$

This is referred to as the weight factor. The following table gives the weight factors for the various materials.

Comparative Weight Factors

Material		Density (lb/culin.)	Stress (psi)
$\because \because$		f	
Beryllium	0.067	06,000	0.683
Magnesium	0.0647	30,000	0.978
Aluminum	0.101	70,000	1.000
Titanium	0.171	119,000	1.350
Stainless Steel	0.277	\cdots	195,000

Aluminum is the preferred material, because the potential weight saving offered by beryllium is offset by its lack of weldability and the marginal advantage available from the use of magnesium is offset by the requirement for heated forming.

The Goodyear Aerospace Corporation (GAC) for several years has been conducting experiments designed to determine the effectiveness of low density foam materials in destroying projectiles with velocities 18 to 22 thousand $\mathrm{ft} / \mathrm{sec}$ (Reference 12).

For bumpers, tests showed that metallic skins erode upon impact, spraying a shower of fragments. Fiberglass cloth impregnated with an elastomer, such as silicone, did not shed particles and was more effective in shattering the
projectile (pyrex sphere, used to simulate stony meteroroids). A fiberglasssilicone bumper weighing $0.17 \mathrm{lb} / \mathrm{sq} \mathrm{ft} \mathrm{was} \mathrm{sufficient} \mathrm{to} \mathrm{shatter} \mathrm{projectiles}$ weighing up to 70 milligrams. It was shown to be more effective than a $12-\mathrm{mil}$ aluminum skin, its equivalent by weight.

For spacers, a number of materials and structural configurations were tested, but foam was clearly superior to anything else tried. GAC.calls the various flexible and rigid foams mechanical atmospheres because they appear to destroy a projectile in much the same way out atmosphere destroys a meteroroid. In fact, the destructive efficiency increased as the foam density was decreased. However, as the density is reduced other factos such as vibration loads begin to play a role in the selection of a filler. GAC recommends as optimum a flexible polyurethane foam with a density of $1 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$.

Though GAC (Reference 13) does not have a mathematical expression which yields required foam thicknesses to stop meteroroids of various descriptions, it has produced three points which are helpful in estimating foam thicknesses for the ELS mission.

Flexible Foam Spacers

Particle Mass (mg) Inches of Foam | Bumper Required |
| :---: |
| (mils of fiberglass) |

70	3.5	$10-15$
17	2.0	$10-15$
5	1.0	none

The above table shows that a bumper is not needed for particles with masses on the order of 5 mg or less. This size includes the LM design meteoroid for primary particles. The weight of one in . of this foam is $0.083 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$.

The primary design meteoroid (10 mg) of the ELS missions falls into the middle category. The two in. of foam used in the GAC test would convert the particle into a gas jet which would impinge on the structural wall. Though the experiments support this description, there is a serious question of their application to the higher velocity particles. Also unknown is the effect in the backup wall for less than the two in. of foam. The experiments nevertheless indicate that a fiberglass bumper is more effective than an aluminum wall of equal weight and that insertion of foam between bumper and backup sheet significantly reduces the size of the backup sheet as required by the previous optimization analysis. The ability of this protection to stop secondary ejecta is discussed below.
airesearch manufacturing division

The GAC data for low velocity particles if very meager. However, two points were found for two in. of foam covered with a 5-mil dacron cloth and a $2-\mathrm{mil}$ white surface coating. They are presented in the following table.

Low Velocity Projectiles

$$
\left(=3.5 \mathrm{gms} / \mathrm{cm}^{3}, V \doteq 830 \mathrm{ft} / \mathrm{sec}\right)
$$

$d<0.18 \mathrm{in}$.	particle bounced off
$d=0.28 \mathrm{in}$.	penetration occurred

In Reference 11 , three velocity groups are specified for secondary ejecta. The particle velocity specified for the middle velocity group is $820 \mathrm{ft} / \mathrm{sec}$. The design meteoroid for this middle group is less than one tenth of an in. These particles and those of the lowest velocity group should bounce off the foam filler. The design meteoroid for the particles in the highest velocity group ($5000 \mathrm{ft} / \mathrm{sec}$) of Reference 11 is 0.0089 inches. As shown in the above table, this is less by a factor of three than the particle size required to penetrate the foam at $830 \mathrm{ft} / \mathrm{sec}$. Also the density of the ejecta particles is 30 percent less than that of the experimental projectile used by GAC. Thus it is assumed that the ELS particle would be unable to penetrate a $15-\mathrm{mil}$ fiberglass bumper and two in. of foam and then have enough energy left to damage the backup wall structure.

As discussed in Reference 14, several approaches have been examined for providing a self-sealing layer to the wall inner face to self-repair a meteoroid damage. One such method, reported in Grumman Aircraft Engineering Corporation LLS studies, which has been tested by U.S. Rubber in a vacuum with promising results, involves the use of a closed cell-type cellular rubber liner. When punctured, the resulting exposure causes the liner to swell, thereby effecting a seal. Weight of the liner is approximately 0.1 lb per fq ft .

More recently, a self-sealing rubber liquid, has been developed at the Air Force Materials Laboratory. The liquid hardens instantly and automatically when struck by a fast-moving projectile. Two liquid rubber reactants, packaged separately, are mixed by the outward flow of air after puncture, producing a hardened elastomeric mass that seals the puncture. The reactants could be contained between quilted, laminated sheeting which is fastened to the internal surfaces of the shelter walls. Further development work, however, is required in this area before benefits can be reliably assessed.

FINAL VERSION OF THE RECOMMENDED CONFIGURATION

A final version of the recommended configuration was generated to accommodate changes such as increased cryogenic tankage requirements and the results of continued study of the shelter payload.

Outboard Profile

The outboard profile of the final version of Configuration $3 B$ is shown in Figure 4-42. The major changes from the corresponding earlier version, Figure 4-6, are discussed in the following paragraphs.

The cryogenics are stored in three separate tanks instead of the two previously required. The two H_{2} tanks are positioned side by side, above and slightly inboard of O_{2} tank; as before they are located symmetrically with respect to the Y axis on the $-Y$ side of the shelter. The tank dimensions and weights are as follows. The O_{2} tank is sperical, has an outside dia of 50 in . and the combined mass of the fluid and tank is 1575 lb . Each H_{2} tank has 43 in . outer dia hemispherical end domes and a 12 in . straight section. The combined mass of each tank and its contents is 230 lb . All tanks have two orthogonal supporting girth rings, each three in. wide and two in. deep radially.

The thermal control radiators were configured to clear the two H_{2} tanks to accommodate the larger envelope of the two H_{2} tanks which protrude above the primary payload envelope. The combined surface area required was reduced to 110 sq ft and the corresponding total weight is 165 lb .

Other changes include the use of storage containers to house the majority of the scientific equipment packages and the storage of the equipment unloading boom adjacent to the $100-\mathrm{ft}$ drill rod extensions on the $+Y$ side.

Inboard Profile

As shown in Figure 4-43, significant changes and rearrangements were made in the airlock and work/living areas of the shelter to accommodate the spherical sector inboard airlock dome and the swinging motion of the 56 in. dia airlock door.

1. Airlock

The airlock has a volume of approximately 130 cu ft and is separated from the adjacent work/living area by a spherical sector dome, indentical in configuration to the forward end dome of the shelter, located 33 in . from the forward end dome. The increase in airlock volume is a result of using the spherical inboard dome in place of the flat bulkhead and maintaining adequate airlock linear dimensions to accommodate two suited men. The airlock has approximately 14 sq ft of free floor area, 85 percent of which has a head room of at least 75 in .

The inboard and overboard doors are both 56 in . in dia and are horizontally offset 7 in. in the $+Y$ direction from the centers of the domes. Both doors have l2-in.-dia viewing ports. To allow clearance for the sliding overboard door, two of the three hard suits are stored above the inboard door on the face of the dome, and the third is located above the overboard door on the concave face of the end dome. The suit checking station is mounted on the face of the inboard dome, on the $-Y$ side of the door opening.

Page Intentionally Left Blank

. Erosion Samples
Erosion Samples
Envi ronmental Exposure Panel

- Meteoroid Ejecta Detector
. Tissue Equivalent Ion Chamber

Cxpendables For 100 Drill (Considered in
Cryogenic Tankage)
A) $\left.\begin{array}{l}9 \times 13 \times 18 \\ \text { B) } 9 \times 13 \times 18 \\ \text { C) }\end{array}\right\}$ Satellite ESS 13×18
C) $9 \times 13 \times 18$

32. Power Conversion Eq
33. Electronic Equip
34. FCA Collector Tank
35. FCA
36 Radiator
$\left.\begin{array}{l}\text { 36. FCA Radiator } \\ \text { 37. ECS Radiator }\end{array}\right\}$ THERMAL CONTROL RADIATOR
36. ECS Ra
37.

40SS Jets
40. RTG Unit
41. RTG Unit
41. Leg Ladders
42. Star Tracker
44. Shelter
45. Shelter Airlock
45. Shecter Airlo
$\begin{array}{ll}\text { 46. } & \text { Docking } \\ \text { 47. Tank } \\ \text { 48. } \\ \text { LO Tank }\end{array}$
48. LO Tank 49. STORGE COMPARTMENT "A" SEE NOTE \#1
49. STORAGE COMPARTMENT "A" SEE NOTE \#1
50. STORAE COMPRTMNT
51. STORAGE COMPARMMENT "C" SEE NTOE \#\#
51. STORAGE COMPARTMENT "C" SEE NOTE \#3
nотеs:

1. Items $3,5,6,23 \mathrm{~B}, 17,18,19,22,26,27 \& 28$
are stored within item \#49 (Storage Compartment "A")
2. Items $1 \mathrm{~A}, 1 \mathrm{~B}, \& 15$ areị stored within item \#50 (Storage Compartment "B")
3. Items $2 B, 4,7 \mathrm{~B}, 8,14,24$ \& 25 are stored within item \#51 (Storage Compartment "C")

Page Intentionally Left Blank

${ }^{\text {KEY }}$

SECTION B-b

1. Door - External Sliding
2. Door - Internal
3. Window
4. Hard Suit (3)
5. Suit Checking station
a. SHEITRR
a (starton)
6. Console - Equi
7. Panels \& Instrunents
8. Panels \& Instrunents
9. Radiation Dosimeter
10. Lights - Tabie (4)
11. Lights - Table (4)
12. T.V. Camera
13. Movie Camera
14.

Still
14. Still Camera
15.
Extra Film $\&$ Tape
16. Data Handling Interface Equipmen
17. Theodoitite \& Renging Iaser
18. Shelter Geology Equi pment
19. Gas Analyze

c. | EAATING AREA |
| :--- |
| 20. Console |

20. Console -
21. Fooo storage
22. Fooa Preparation

Table - Eating \& Recreatio Table - Eating
Water Probe
Het Plate Hot Plate
Utensils
27. Dispenser

EXERCISER AREA
28. Hand Ergometer (Optional)
29. Bungee Cord (Optional)
e. RECREATION-STUDY AREA
. storage area
Personal Storage

Medical \& Emergency Supplies (se
Houseeepping Provisions Package
Housekeepi
Laundry

Constant Wear Garment (C.W.G.) (3)
Eva Boots (3)
Suit Spare Parts \& Repair Kits
. Intraveh
g. SLERPING \& REST AREA
44. Bunk Besis Remonable (3)
45. Soft Suit (3)
. Light-Portable
PLSSS Charging AR
47. PISS (6)
PISS (6)
Lion (150)
PISS Batte
PISS Battery Charger
PILS Batteries (12)
PLSS
51. PISS Catioribration Unit
52. Emergency Oxygen System

ENVIROMMENTM CoNTroL AREA

54.

MISCELLLANEOUS AREA
55. Seats - Foldable (3)
. Helmets (3)
57. Hatch - Upper
58. Li.ghts - Dome (3)
59. Pressure Dump Valve (2)

Page Intentionally Left Blank

2. Work/Living

The arrangement of the internal equipment is a mirror image, i.e., $+Y$ and -Y locations interchanged, of the arrangement for the earlier version shown in Figure 4-8. This was done to provide clearance volume for opening the 56-in. dia airlock door and to locate the ECS suit and associated equipment on the -Y side, adjacent to the O_{2} tank. The resulting arrangement provides an approximately rectangular floor area of about 45 sq ft and a total table surface of about 30 sq ft of which $1 / 3$ is foldable.

3. Sleep-Rest/Radiation Refuge

The sleep-rest/radiation refuge arrangement is the same as previously discussed and as shown in Figure 4-8.

The "launch" arrangement of the Work/Living and Sleep-Rest/Radiation Refuge areas for the final version of Configuration $3 B$ is shown in Figure 4-44.

Structural Arrangements

The shelter structural arrangement for the final version of Configuration $3 B$ is shown in Figure 4-45. The overall configuration and dimensions are the same as previously shown in Figure 4-11. However, to take advantage of the existing diagonal bracing of the cruciform beams and a more direct load path to the outrigger support structure of the landing legs, the shelter structure is connected to the LM/Truck by four fittings trying the intersections of the two end dome compression rings and lower longerons to the LM/Truck beams at $\pm Z 81, \pm Y 27$.

1. Stiffened Cylindrical Shell

The general arrangement of the stiffened cylindrical shell, using a machined skin to provide for the structural connection of frames and longerons, is the same as shown previously in Figure 4-11.

2. End Domes and Airlock Bulkhead

The major changes from the earlier version are the use of a spherical sector dome similar to the forward end dome for the airlock bulkhead and the shape and location of the airlock door cutouts.

The airlock is separated from the work/living area by a 7 -ft-radius spherical sector dome located 33 in . from the forward end-dome. It is attached to the cylindrical skin by means of its peripheral compression ring welded to a land on the skin. The dome skin is stiffened to carry a 7-psi ('burst') compression load under emergency conditions. The airlock door cutout is identical for both domes; a mounting surface for the airlock door seal is integral with the framing ring around the door cutout. A curved bead integral with the overboard side of the forward end-dome framing ring, as shown in Section A-A of Figure 4-45, can be used to retain a temporary fabric type closure over the opening to allow seal inspection/maintenance in a controlled environment.

AIRESEARCH MANUFACTURING DIVISION

Page Intentionally Left Blank

KEY:

1. LiOH "BLANKET" (SEE DETAIL "F")
2. LiOH PACKAGE (SEE DETAIL "E")
3. PLSS BACKPACKS (4)
. BUNKS (FOLDED)
4. SEATS (FOLDED)

Page Intentionally Left Blank

Page Intentionally Left Blank

3. Shelter Floor

The shelter floor is the same as described previously for the recommended configuration.

4. Docking Ring and Tunnel

The docking ring, hatch sealing surface and tunnel structural arrangement are the same as described previously. The tunnel is welded to a flared section of the cylindrical shell skin outboard of the sealing surface edge member.

The outboard equipment structural arrangement for the final version of Configuration 3B is shown in Figure 4-46.

The primary changes from the earlier version are in the supporting structures for the shelter operational equipment i.e., cryogenic tanks, fuel cell assemblies, etc.

5. Cryogenic Tanks

Each cryogenic tank has three thermally isolated support points located at 90 deg intervals about a girth ring. The two main support points are 180 deg apart at the intersections of the two orthogonal girth rings; the third point provides the torque restraint.

As shown in Figure $4-46$, the tanks are supported by a common machined aluminum frame. Vertical loads on the tanks are transferred by the frame to the $L M / T r u c k$ cruciform beams at $-Y 81, \pm 2$ 27. The Y direction loads carried by the frame to truck beam connections and two struts from the center of the frame, at the H_{2} tank mounting points, to the shelter main frames near the upper longeron. The Z direction loads are carried differentially by the frame to the truck beams and by the two struts to the shelter frames. Tank rotation about the axis through the main supports is prevented by a pinned connection to the frame flange; at the midpoint of the lower half of each H_{2} tank girth ring and at the midpoint of the upper half of the O_{2} girth ring.

If subsequent mission objectives require azimuth orientation of the shelter mounted on the truck, post landing support of the tanks independently of the truck can be easily adapted to the supporting frame. Four struts, two at the outboard main supports of the H_{2} tanks and two at the main supports of the O_{2} tank would transfer the post landing vertical and Y direction loads to the shelter at the intersection of longerons with main frames, aft convenience frame and airlock dome reinforcing ring, as shown in Figure 4-46. The Z direction loads would be carried by the two struts used for flight and landing loads, and by a fitting from the O_{2} tank "horizontal" girth ring to a longeron on the shelter.

6. Fuel Cell Assemblies, Power Conversion and Electronic Equipment

The two fuel cell assemblies are connected by shear webs and the collector tank strapped to them to form a single assembly. As previously stated the third cell was illustrated in the outboard profile only to show how it could be accommodated, if necessary.
airesearch manufacturing division

Page Intentionally Left Blank

Figure 4-46.: Final Version Configuration 3B Outboard Equipment Structural Arrangement

Page Intentionally Left Blank

The loads on this assembly are carried by a vertical shear web attached to the reinforcing ring of the aft end dome and by angle brackets to the power conversion and electronic equipment packages which are also structurally connected to form a single assembly. The loads of the power conversion/electronic equipment assembly are carried by a strut to the aft convenience frame on the shelter and fittings to the $100-\mathrm{ft}$ drill rod extension package which transmits the loads to the truck beams. Secondary fittings from the power conversion/ electronic equipment assembly to the shelter provide post landing support after the drill rod extension package is removed.

7. Thermal Control Radiators

The structural arrangement for supporting the thermal control radiators is the same as previously described.

8. Scientific Equipment

The two l00-ft drill rod extension packages are directly supported by the LM/Truck cruciform beams. The drill extension packages directly support other pieces of equipment, e.g., sonic velocity logging, surveying staff, etc.; they also are used as beams to provide a load path from the scientific equipment containers/frames to the LM/Truck beams. To react loads and moments not taken directly by the drill packages, struts and fittings are used to transmit the loads to the shelter frames or dome compression rings and longerons.

9. LSSM

The LSSM is supported by the LM/Truck beams, shelter frames and longerons as described previously.

To minimize the in-situ activities for unloading the equipment, squib bolts and pip pins are used in the fittings of the structural supports for the equipment packages and LSSM.

Mass Summary

The mass summary for the final version of the recommended configuration is shown in Table 4-5. The same considerations relative to the mass summary for the earlier version of Configuration 3B, are pertinent to this mass summary with the following exception. The additional radiation shielding provision of 60 lb is based on the previously discussed quonset hut arrangement for a radiation refuge and assumes a minimum of 240 lb of aqueous liquids on board during stay time.

As previously discussed the overall length and dia of the recommended shelter are constrained by the primary payload envelope and the externally stored complement of the payload. This latter constraint is most susceptible to change and can influence shelter diameter and length.

The change in weight of the final version of the recommended configuration as a function of change in volume, with shelter dia and length as parameters is shown in Figure 4-47.

TABLE 4-5
MASS SUMMARY - FINAL VERSION OF CONFIGURATION 3b

EQUIPMENT	KG	(LBM)	KG	(LBM)
Shelter Structure			386	(850)
Pressure Skin and Hands	88.5	(195)		
Stringers and Longerons	18.2	(40)		
Frames	47.6	(105)		
Airlock Inner Dome, Door and Mechanism	43.1	(95)		
Overboard Doors and Mechanism Penalty	15.9	(35)		
Floor and Supports	43.1	(95)		
Docking Structure and Hatch	38.6	(85)		
Viewing Ports	27.2	(60)		
Fittings	18.2	(40)		
Leveling	45.4	(100)		
Meteoroid Protection (Exclusive of backup sheet)			61.2	(135)
Bumper Panel	36.3	(80)		
Standoffs	4.5	(10)	.	
Foam	20.4	(45)		.
Thermal Insulation (30 sheets SI)			11.3	(25)
External Equipment Supports			108.9	(240)
Internal Equipment Supports			90.8	(200)
Radiation Refuge Additional Provisions			27.2	(60)
Equipment Unloading, Crew Access			43.1	(95)
TOTAL			728	(1605)

* Based on 'quonset hut' arrangement and minimum of 240 lbs. aqueous liquids onboard during stay time.

Figure 4-47. Final Version Configuration 3B \triangle Weight vs \triangle Volume

The relationships shown are valid for volume variations of up to approximately $\pm 150 \mathrm{cu} \mathrm{ft} \mathrm{relative} \mathrm{to} \mathrm{the} \mathrm{nominal} 750 \mathrm{cu} \mathrm{ft}$ volume of the shelter. The weight increments are based on the elements directly related to shelter geometry, e.g., pressure shell skin, micrometeoroid and thermal protection, numbers of stiffeners and their lengths convenience floor etc. The weights of external supporting structures and tie downs were assumed constant over the $\pm 150 \mathrm{cu} \mathrm{ft}$ variation.

Fabrication - Assembly

The fabrication - assembly flow schematic for the final version of the recommended shelter configuration is shown in Figure 4-48.

The shelter would be constructed as three major assemblies:

> Airlock end dome, cylindrical pressure wall, and inner dome
> Center cylindrical pressure wall and docking tunnel
> Aft end dome and cylindrical pressure wall

The spherical sector domes would be fabricated from circular blanks which are free formed to the 84 in . radius of curvature by hydraulic pressure applied through a holding ring. Chemical milling would be used to reduce the shell thickness and provide the necessary welding lands around the periphery and airlock door cutouts. The edge compression ring and door opening reinforcing elements would be rolled to the required radii and welded to the domes.

All single curvature pressure shells would be machined to provide the longitudinal and circumferential integral skin stiffereners and welding lands. A filler material would be used to support the machined panels during the subsequent rolling operations. After rolling and sizing the airlock cylindrical section, the closing joint would be automatically fusion welded. The two airlock spherical sector dome subassemblies would then be automatically fusion welded to the cylindrical section.

To facilitate the subassembly of the docking tunnel to the center pressure walls, a splice section consisting of approximately 60 deg arc of the pressure wall would be used. The docking tunnel splice and the remaining partial cylindrical section would be rolled, sized, and automatically fusion welded together to form a complete cylindrical center section.

The aft section of the shelter would be fabricated and assembled in the same manner as the airlock section but without the inner spherical sector dome.

AIRESEARCH MANUFACTURING DIVISION

Page Intentionally Left Blank

The final fabrication - assembly operation consists of sizing/aligning the three sections and automatically fusion welding the two interfaces. The operation would be followed by welding/mechanically fastening external frames, longerons, structural support fittings, internal and external bracketry, floor supports, and floor panels.

Airlock doors and mechanisms, docking tunnel hatch and viewing ports, etc., would be installed after the final fabrication - assembly operation is completed.

SECTION 5

RELIABILITY

Reliability evaluations were made of the mechanism used in payload deployment and air lock door operations. Excluding the probability of puncture by a micrometeoroid, the shelter structure/pressure shell was considered to have a failure rate approaching zero.

The evaluations were based on the assumption of exponential failure rates and the following considerations:

- Phase Hours

Boost
0.559
79.228
$\begin{array}{ll}\text { Quiescent storage } & 4320.000 \\ \text { Staytime } & 1200.000\end{array}$

- Operational/Nonoperational "K" factors

Operational Nonoperational
Boost
Nonboost (thru staytime)
10.0
0.01

- Failure rates for mechanism components were obtained from the Honeywell Reliability Survey Report on Part Failure Rates, U-ED 23008 November 1962.
- For nonrepetitive operations, e.g., leveling the shelter or unloading the LSSM, an operational period of 1 hr was used in the calculations, although the actual operation might require less time.

The results of the evaluation are shown in Table 5-1.

TABLE 5-I

RELIABILITY EVALUATION

Mechanism	$\begin{gathered} 2 \times 10^{6} \\ (1 / \text { hours }) \end{gathered}$	$\underset{\text { (hours) }}{\boldsymbol{\Sigma} \mathrm{Kt}}$	Reliability	Assumptions
Airlock Doors and Seals	218.42 inboard doors 221.26 outboard doors	12.2714	$\begin{aligned} & .99731 \\ & .99728 \end{aligned}$	4 door cycles/day during 50 day staytime and allowed 2 minutes/cycle
Shelter leveling	699.15	5.4298	. 9962	leveled before 24 hours of staytime have elapsed
LSSM unloading	442.325	5.4538	. 99759	unloaded before 48 hours of staytime have elapsed
Equipment unloading	293.30	15.5237	. 99545	total use time of 10 hours throughout staytime
Docking Tunnel Hatch and Seal	30.7	6.60481	. 999797	used once for in-flight checkout, available for emergency use throughout staytime

SECTION 6

DERIVATIVE SHELTERS

The recommended shelter configuration is readily adaptable to modifications which provide increased habitable volume and allow moving the shelter from the landed site.

INCREASED VOLUME

Increased volume can be obtained by in-situ extension of a structurally rigid inner section of the shelter which is in a retracted or telescoped position within the fixed, or outer, section of the shelter for delivery to the lunar surface; this concept is illustrated in Figure 6-1.

The effects of the extensible section on the outboard profile and arrangement of the supporting structure for the outboard equipment would be negligible. For this concept of providing additional volume, initial entry and use of the air lock is not impeded by the extensible section. However, in-flight checkout of the shelter via the docking tunnel hatch is pracluded unless a hatch is provided in the extensible section adjacent to the docking tunnel.

In general, the structural arrangement of the fixed section of the shelter as previously described would be the same except at the aft end of the section. At this location, the end dome compression ring would be replaced by a member which provides the sealing surface for the extended shelter section and carries the flight and landing loads as well as the torsion loads on the sealing surface when the shelter is pressurized.

The arrangement of guide rails and mechanism for moving the extensible section and the in-situ placement of the convenience floor and equipment in the fixed section, after extension the inner section, require detailed rearrangement of internal fittings to the frames and longerons but impose no major structural modifications.

The extensible section structural arrangement would be similar to that of the fixed section but with frames and longerons of much lower section modulii since this section does not support external equipment and does not transfer docking ring loads.

Its permanent internal arrangement would be similar to the work/living and sleep-rest/radiation refuge areas as described for the recommended configuration. In the delivery mode, it would also house the convenience floor and equipment for outfitting the fixed section.

Based on a preliminary investigation, a motor-driven wire rope and pulley arrangement is suitable for extending the inner section of the shelter, using guide-rails to limit the eccentricity between the inner and outer sections. Shelter environmental pressure would load the seal; sealing surface configurations and a peripheral clamp similar in concept to that used for the air lock

AIRESEARCH MANUFACTURING DIVIIION

Figure 6-1. Extensible Volume Version of Configuration 3B
doors would be used to provide a positive mechanical connection between the two sections. The surfaces to be clamped would be accessible from inside the shelter, and since the installation of the clamp is nonrepetitive, a single bolt/toggle mechanism located on the clamp periphery would be used to tension it.

The extension of the inner section of the shelter provides approximately $500 \mathrm{cu} f \mathrm{ft}$ of additional volume for a weight increase of about 400 lb . This relatively high volume-to-weight ratio is attained since the extensible section is not required to carry flight and landing loads from external equipment or docking ring loads.

TRANSPORTABI LITY

The shelter can be transported on the lunar surface by attaching powered wheels to it and using the LSSM as a driving station as illustrated in Figure 6-2.

The powered wheels would be stored inside the shelter for the delivery phase and manually connected to the shelter during the shelter unloading sequence, previously described in Section 4, Radiation Analysis, when the shelter is in close proximity to the lunar surface. For the wheel size considered, i.e., 66 in. dia $\times 15$ in. rim width, the periphery of each wheel would be deflected by strapping to allow its passage through the 56 in. dia air lock door openings.

The configuration and structural arrangement of the recommended shelter can accommodate the external attachment of the wheels without any major change; the wheel mounting fittings are supported by the end dome compression rings and lower longerons. Typically, the attachment of the wheel to the fitting utilizes splined flanges, or shaft and housing, with a peripheral locking collar to react loads transverse to the plane of the wheel. Except for the shelter operational equipment, other externally located equipment would be removed to provide the clearance envelope for the mounted wheels.

The LSSM is connected to the shelter with a guide bar which provides the controlling inputs for shelter wheel speed, braking, and skid steering as a function of LSSM maneuvers; it is not used to tow the shelter.

The shelter transportation power vs slope for the ELMS upland profile is shown in Figure 6-3.

AIRESEARCH MANUFACTURING DIVISION

Figure 6-2. Transportation Version of Configuration 3B

Figure 6-3. Shelter Transportation Power vs Slope

The weight penality to provide the shelter with transportability is summarized below:
Item Weight, 1 b
Transportability 795
Wheels (4) 400
Wheel drives (4) 240
Structural Suspension 100
Steering/Mobility controller 30
Guide bar and cabling 35
Shelter unloading (see Section 4, Radiation Analysis) 355
Total 1100

REFERENCES

I. Design Criteria and Reference Data Handbook for Lunar Exploration Systems NASA Study Guidelines

Vol I: General Criteria
Vol II: LM/Truck Shelter Payloads
2. Statement of Work, Early Lunar Shelter Design and Comparison Study, NASA document, P-163, July 1965.
3. Modisette, Vinson, and Hardy, "Model Solar Proton Environments for Manned Spacecraft Design", MSC, Houston, April 65 (NASA TN D-2746).
4. Summary Report, Studies of Lunar Logistics System Payload Performance, PDR-2b Vol. I , Section l-13, Technical (2 books), Grumman Project 344 , Grumman Aircraft Engineering Corporation, Bethpage, Long Island, New York. Contract NASw-528.
5. Summary Report, Studies of Lunar Logistic System Payload Performance Supplement I, Grumman Project 344, Study of LLS Payloads Compatible with a Modified LEM, PDR-344-3a.
6. Apollo Logistics Support System (ALSS) Payloads, BSR 1/19, The Bendix Corporation, Systems Division, Ann Arbor, Michigan, Final Report, Contract NAS 8-11287.
7. Apollo Logistics Support System (ALSS) Payloads, D2-83001-N, The Boeing Company, Aero-Space Division, Seattle, Washington, Final Report, Contract NAS 8-11411.
8. Lunar Excursion Module Phase B Final Report Vol V Shelter Design Analysis Summary (U), Grumman Design 378B, Apollo Extension Systems.
9. Bresticker, S., Shielding of Radiation Environment in Space, (SORES), Grumman Computer Program, Advanced System Space Sciences Group, Grumman Aircraft Engineering Corporation, Dec. 1965.
10. "Meteoroid Environment in Near-Earth, Cislunar, Near-Lunar Space", Engineering Criteria Bulletin, EC-I, Nov. 8, 1963, NASA/MSC.
11. LEM Specification, No. LSP-470-I, Paragraph 3.3.2.2.1.3, December 23, 1964.
12. Pepitone, S.J., and B.W. Reynolds, "Effectiveness of Foam Structures for Meteoroid Protection," Goodyear Aerospace Corporation, Akron, Ohio, Journal Spacecraft, Vol I, No. I, Jan. 1964.

AIRESEARCH MANUFACTURING DIVISION

REFERENCES (Continued)
13. Telephone conversation, C. W. Wenzel of Grumman Aircraft Engineering Corporation and Bernard Burzlaff of Goodyear, Sept. 1966.
14. Piechocki, James J., (Senior Research Engineer), Self-Sealing Spacecraft Structures in the Meteoroid Environment, Northrop Space Laboratories.

BOOK 2
 REVIEW OF SCIENTIFIC MISSION REQUIREMENTS

CONTENTS

Section Page
1 INTRODUCTION AND SUMMARY $1-1$
2 THE SCIENTIFIC MISSIONS AND THEIR REQUIREMENTS 2-1
Applications of Experimental Results to Early 2-1
Lunar Shelter Concepts
Baseline Scientific Missions $2-11$
Baseline Mission Timelines 2-15
Sortie Task Timelines 2-21
Contribution of a Third Crew Member to 2-33Crew Safety and Mission Success
Lunar Night Effects on Missions 2-36
Alternate Scientific Mission Definition 2-37
General 2-37
Alternate Scientific Missions List 2-38
Alternate Missions Definitions 2-42
3 CONCLUSIONS 3-1
REFERENCES $R-1$
APPENDIX GUIDELINES AND ASSUMPTIONS FOR EARLY LUNAR SURFACE A-IMISSIONS

ILLUSTRATIONS

Figure		Page
2-1	Meal Consumption Times vs Days in Simulator	2-3
2-2	Relationship of Oxygen Consumption and Heart Rate Operator 1	2-9
2-3	Mean Heart Rate Task Profiles as a Percent of Maximum Work - (P/PC $) 100$	$2-10$
2-4	Treadmill Profiles at 4-percent Grade - Operator 2; 9 Full Days in Simulator	$2-12$

TABLES

Table

2-I Early LUNEX II Task Timeline 2-4
2-2 Final Lunex Task Timeline \quad 2-5
2-3 Average Time to Complete Tasks (hr:min) 2-6
2-4 NASA Summary of Measurements Made for Baseline Missions 2-13
2-5 \quad Task Completion Times per Measurement for One Man $\quad 2-14$

2-6 Basic Mission Timeline with Sorties and Tasks for Each 2-17 Day (LSSM Times Based on Two-Man LSSM Crew)

2-7 Expanded ESS Mission Sortie Summary 2-19
2-8 Alphonsus LSSM-LFV Mission Sortie Summary $\quad 2-20$
2-9 Summary of Mission Differences 2-22
2-10 Three-Man, 24-Hr Timelines for LSSM Sortie Days, 2-23 Alphonsus or Hyginus Rille Missions (Concept B, Two Men on Surface)

2-11 Three-Man, 24-Hr Timelines for Local ESA Sortie Days, $\quad 2-24$ Alphonsus or Hyginus Rille Missions (Concept B, Two Men on Surface)

2-12 Three-Man Timelines for First LSSM Sortie (Applies to 2-25 all Missions)

67-1964-6 Book 2	TABLES (Continued)	
Table		Page
2-13	Three-Man Timelines for Second LSSM Sortie (Applies to all Missions Except. Alphonsus LSSM-LSV; Expanded Satellite Sortie is for Expanded ESS Mission)	2-27
2-14	Three-Man Timelines for Third LSSM Sortie (Applies to all Missions)	2-29
2-15	Three-Man Timelines for fourth LSSM Sortie (Applies to all Missions)	2-31
$2-16$	Summary of Local Surface Sorties (Local ESA's)	$2-34$
2-17	Twenty-Four-Hour Timelines for Resources Investigation Mission	2-44
2-18	Twenty-Four-Hour Timelines for Radioastronomy Alternate Mission	2-48
2-19	Three-Man Timelines for 40-in. Telescope Alternate Mission	2-53

SECTION I
 INTRODUCTION AND. SUMMARY

INTRODUCTION

Four lunar scientific missions are described in the study guidelines based upon a 2-man, 14-day lunar staytime capability. Since the Early Lunar Shelter (ELS) will provide a considerably greater mission capability, the following steps were needed to establish the subsystem design requirements:

- Extrapolate the 2 -man, 14-day missions to the ELS capability
- Determine the impact of ELS extended mission time on scientific equipment complement, expendables, and performance

The mission timelines and requirements studies reported in Volume 2 were primarily concerned with defining the following for a "baseline" mission:

Crew timelines and activities
Scientific mission support equipment lists and interface requirements

Power and material consumption profiles
The baseline mission was defined to contain sufficient equipment and operational capability to perform the experiments given for all four study guideline missions.

The studies reported in this volume investigated the following:
Utilization of the third crewman
Alternative scientific missions applicable to the ELS concept
Detailed definition of scientific mission timelines
Implications of alternatives upon crew safety and mission success

SUMMARY

Since each mission will be carried out through sorties to various points on the lunar surface, the number of crew members available to perform these sorties is critical in mission planning. A 2-man crew has been the basis for planning lunar missions to date (References 1 through 5). A basic problem in the subject study was to determine the impact of a 3 -man crew on current baseline missions.
airesearch manufacturing division

With additional manpower, alternate missions may be considered. A second problem for this study was to define alternate scientific missions applicable to the ELS concept and made possible with a 3-man rather than a 2-man crew.

To obtain pertinent data, experimental studies were performed and the literature searched. Proposed scientific missions were analyzed to determine crew assignments, and crew task timelines were developed. Wherever applicable, experimental data from other recent studies have been used.

With the data accumulated, baseline scientific missions were more closely defined or elaborated upon. Flexible timelines for 3-man crews were developed, including sortie task timelines, $24-\mathrm{hr}$ mission timelines, and 14 -day missionsortie schedules. The timelines reflect crew activities involved in the following facilities: Local Scientific Survey Module, Lunar Flying Vehicle, Emplaced Scientific Station, and the ELS itself.

A further consideration involving the third crewman was his effect upon mission success and surface activity safety. Problems raised by operations during the lunar night also were considered.

Eighteen alternate missions were ranked according to relevance, scientific importance, and feasibility as determined by time available and equipment requirements. This report contains detailed descriptions of the first three alternate missions and the equipment and crew tasks involved, together with their impact upon the baseline missions.

Basic findings of the third-crew-member extrapolations are that he

- Increases the time available for surface activity and shelter tasks by about 60 percent
- Makes feasible 6-hr LSSM sorties
- Greatly enhances crew safety

These advantages may be obtained with a 50 -percent increase in expendables and a 25 -percent increase in living space and power requirements.

AIRESEARCH MANUFACTURING DIVISION

SECTION 2

THE SCIENTIFIC MISSIONS AND THEIR REQUIREMENTS

The successful execution of scientific missions by a 2- or 3-man crew is to a large extent dependent on the capabilities of life support systems; appropriate crew procedures, the definition of crew tasks, and the characteristics of the equipment housing and transporting of the crew. Within this framework, baseline scientific missions (as defined in Reference 5) and potential alternate scientific missions will be performed. The efficiency and safety of the crew will be a primary consideration, requiring adequate life support, avoidance of or protection against hazardous operations, and the scheduling of task assignments so that productive mission time is maximized within the limits of reasonable work/rest cycles and the known or expected man-machine performance capabilities of the LEM/T Shelter systems.

Mission guidelines and assumptions were obtained principally from recognized sources (References 1, 2, and 5) with changes made where necessary to accommodate a 3 -man crew. These guidelines and assumptions are given in the Appendix.

APPLICATIONS OF EXPERIMENTAL RESULTS TO EARLY LUNAR SHELTER CONCEPTS

Honeywell has recently conducted a series of simulations for NASA to establish preliminary cabin free-volume design criteria for lunar surface vehicles. Performance and physiological measures were used in evaluating vehicle interior volumes during a series of $3-h r, 10-h r$, and $72-h r$ simulations (Reference 16) culminating in an 18 -day simulation referred to as the Lunex II simulation (Reference 7). Two-man crews were used for each of these simulations. An integral part of these simulations was a crew task analysis to determine representative timeline summaries of crew activities. Timeline analyses were performed to identify crew tasks, provide logical sequencing of tasks, and identify instances of potential conflict in task scheduling.

Upon completion of the short simulation phases of the study (3-hr through 72-hr), the analytic timelines were revised to incorporate the task schedules and task completion times empirically determined during the simulations. During the 18 -day simulation, a task schedule based on the short-duration simulations and timelines generated by other investigators (References 17 and 18) was used. New task times were empirically determined, resulting in the evolution of a functional timeline permitting successful completion of daily task assignments for the remainder of the simulation.

Since these simulations were designed principally to evaluate cabin interiors, the applicability of crew task times to more extensive simulations or real missions involving crew activities outside a shelter is restricted to those tasks common to all missions. These tasks are sleeping, eating, housekeeping, hygiene, and pressure suit donning and doffing. The scientific tasks simulated, though categorically similar to tasks to be performed in a lunar surface shelter, were not realistic enough to provide actual mission performance time information. They did provide order-of-magnitude time estimates, however, in that they were designed to duplicate the type of physical activity required by crew members to complete the tasks.

AIRESEARCH MANUFACTURING DIVISION

Certain geophysical tasks designed by the University of Minnesota Geophysics Department were of particular value in this regard. The straightforward application of these results, however, must be considered preliminary, pending further simulations using more realistic systems and hardware. With these limitations in mind, the following experimental results are applicable to developing a task timeline for early lunar shelters.

Sleeping. For small-volume shelters requiring space allotted for sleeping to be shared with interior workspace, crew members should sleep concurrently, permitting minimum disturbance to sleeping crew members. Eight uninterrupted hours are allotted for this purpose.

Eating. To increase the time available for scientific tasks, no more than three meals a day should be required. The rehydration, mixing, and consuming of food prepared for space flights requires a significant time period. During $72-h r$ simulations, two subjects could prepare and consume an average $700-\mathrm{cal}$ meal in a mean time of 33 min . The time to prepare and consume the same quantity of food increases to an average of approximately 43 min per meal for two subjects during extended simulations, as was evident in the 18-day study (see Figure 2-1). At times, meal preparation and consumption required as much as 50 min per meal. For three meals a day, 2 to $2-1 / 2 \mathrm{hr}$ per day may be required of two men time-sharing: this task. This is due to the subject's tendency to take more time per task during prolonged simulations and to be more concerned about cleanup and associated oral hygiene following each meal. The exact number of calories consumed does not appear to be as important a time factor as the time to set up, rehydrate, and mix the food. (The diet used is considered to be equivalent to that planned for the Apollo missions.) For this reason, it is desirable to have all major meals involving the rehydration of dehydrated food to be a time-shared task permitting crew members to assist each other in the preparation of meals; i.e., eating should be a parallel task, not a series task, if time is to be conserved.

Housekeeping, Hygiene and Personal Time. The time required to perform these activities has been frequently disregarded or underestimated. Short-duration simulations require less time for these activities than long-duration simulations. During the 18 -day Lunex II simulation, the subjects were initially required to minimize personal time and housekeeping tasks. After four days, more time for relaxation and housekeeping was requested due to excessive fatigue and stress on the subjects. As a result, the time per day spent on personal time, hygiene, and housekeeping was increased from 1 hr 5 min to 4 hr 5 min , where it remained for the rest of the simulation
aIresearch manufacturing division

Figure 2-1. Meal Consumption Times vs Days in Simulator

Pressure Suit Donning and Doffing. The time to don and doff pressure suits is a sensitive function of subject training, the type of suit, and the amount and quality of associated support equipment. Mark IV pressure suits can be donned and pressurized simultaneously by two experienced subjects in a $48-c u-f t$ airlock in 20 min and doffed in 15 min . This includes one subject's donning and doffing of a PLSS mockup (Reference 16). During the 18 -day simulation using Apollo state-of-the-art suits, 25 min were required by the two crew members to don the suits and backpack. Doffing the suit, hanging up for drying, and the associated personal cleanup required 45 min . The additional donning and doffing of a protective outer suit garment, or the donning and doffing of a hard suit for extravehicular activity can be expected to require more time. A NASA estimate (Reference 4, p. 5-23) of the time involved for the whole egress-ingress procedure for the LEM shelter requires 54 min for egress and 55 min for ingress. Verification of these times can be obtained only by simulated (or real) missions where all state-of-the-art components are used. These estimates are, at present, the best available.

The scientific tasks simulated were likewise limited in value in the absence of complete systems and equipment realism. The first four days and the finally evolved task times for the Lunex II simulation are shown in Tables 2-1 and 2-2. The times required to complete various groups of tasks for the 3-day and 18 -day simulations are shown in Table 2-3. The times listed for driving would normally be included in the extravehicular surface activity during the LEM/shelter mission.

TABLE 2-I

EARLY LUNEX II TASK TIMELINE

Time of Day	Sequence A	Sequence B	Approximate Task Time (hr:min)
0600	Take down beds	Take down beds	: 20
0620	Flectrode checkout	Electrode checkout	: 25
0645	Personal hygiene	Peraonal hygiene	: 15
0720	Eat and clean up	Eat and clean up	: 45
0750	Scientific tasks	Scientific tesks	: 30
	Audio balancing Suit checkout	Sample measurement Audio balancing	
0820	Don suit	Don suit	: 55
0915	Outside tasks	Inside tasks	: 30
0945	Doff suit.	Doff suit	: 55
1040	Drive	Monitor	1:00
1140	Chart (if required)	Navigate	: 30
1210	Eat and hygiene	Eat and hygiene	: 45
1255	Scientific task	Scientific task	1:00
	Audio balancing	Geophysical tasks	
	Sample measurement		
	(G P I set)	Audio balancing	
	Geophysical tasks	Semple measurements	
1355	Don suit	Don suit	: 55
1450	Inside tasks (e.g. G PIset)	Outaide task	: 30
1520	Doff guit	Doff suit	: 55
1615	Eat and hygiene	Eat and hygiene	: 45
1700	Monitor	Drive	1:00
1800	Navigate	Chart (if required)	: 30
1830	Scientific tasks	Scientific tasks	1:00
	Sample measurement	Audio balancing	
	Audio balancing	Geophysical tasks	
	Geophysical tasks	Geophysical tasks	
1930	Buffer time period	Buffer time period	: 30
2000	Eat and hygiene	Eat and hygiene	: 40
2040	Scientific tasks	Scientific tasks	:50
	Sample measurement	Geophysical tasks	
	'Geophysical tasks	Sample measurement	
2130	Remove electrodes	Remove electrodes	:05
2135	Hygiene	Hygiene	:15
2150	Set up beds	Set up beds	:10 ,
2200	Retire	Retire	

AIRESEARCH MANUFACTURING DIVISION

TABLE 2-2
FINAL LUNEX II. TASK TIMELINE

TABLE 2-3
AVERAGE TIME TO COMPLETE TASKS (HR:MIN)

Task Group	Three-Day Simulations	First 4 days of 18-Day Simulation	Remainder of 18-Day Simulation
Personal time, hygiene and housekeeping tasks	1:05	1:30	4:05
Eating and associated cleanup	2:12	2:55	3:00
Driving task	2:15	2:00	2:00
Extravehicular tasks	1:00	1:00	1:10
Inside scientific tasks	7:55	4:25	3:40
Suit donning and doffing (plus egress-ingress and PLSS and suit checkout)	1:33	3:40	1:35
Buffer time period	-	:30	:30
Sleeping	8:00	8:00	8:00
Totals	24:00	24:00	24:00

The University of Minnesota Geophysics Department provided a variety of tasks designed to represent the type of geological activity expected on early lunar missions. These tasks were not intended to imitate actual lunar mission tasks but to represent simple yet realistic geological activities. The tasks required the collection of as many different rock and mineral categories as possible, retaining only one sample of each category. The tasks further required that the traverse of the lunar mission be accurately mapped with respect to prominent known terrain features and that new terrain features be mapped as they are observed.

The microscopic analysis of rock samples began with the subject in the inflated suit making judicious rock sample collections during his extravehicular activity. Nearly 100 rock samples, representative of the types geologists expect to find on the moon, were located in the area outside the Lunex II simulator. The subject's task was to visually sort the samples and select 20 rocks appearing to represent discrete categories. These 20 samples were returned to the Lunex II, where analysis of the samples was performed. In each of the 20 samples, there were no more than eight categories. The subject's task was to determine which eight should be returned to earth. Microscopic analysis of mineral samples required the analysis of mineral grains by use of a binocular microscope and a polarizing microscope. Mineral crystals requiring sorting by category and by properties were provided. These crystals had to be identified by sampling and microscopic counting. The minerals mounted on petrographic slides required analysis by the determination of anisotropic, isotropic, and opaque light transferring properties using the polarizing microscope. The subject's task was to sort crystals and to distinguish distinct mineral samples mounted on petrographic slides.

In association with the navigation tasks, specific terrain features were revealed at irregular times, and had to be located on the subject's map. For example, a particular mountain was showing during one navigation period. The angle to the mountain was noted and a ray drawn from the Lunex location through the mountain location. After several driving periods, the same mountain was again shown and a ray drawn. The intersection of the rays located the new terrain feature on the subject's map. In this way, single-dimension plotting of simulated lunar terrain features was possible.

The petrographic slide analyses, rock sample analyses, and terrain charting tasks were successfully completed within the simulation timeline constraints. The microscopic sorting and classification of mineral grains proved to be a painstaking, time-consuming task. The subjects did not have time to complete this task during the 18 days. Both subjects considered tasks of this variety too time-consuming for actual missions.

These simulations were, in accordance with their objective of evaluating cabin volumes, largely restricted to the performance of inside shelter tasks. It became obvious, however, that the performance by 2 -man crews of routine tasks within the shelter leaves little time for daily outside activity.

If more time is to be spent outside the vehicle, this could be accomplished by devoting whole days to extravehicular tasks (assuming the pressure suits and support systems are adequate). On these days, few, if any, inside scientific tasks would be performed. Likewise, to accomplish inside tasks, whole days with no extravehicular activities may be required. This suggests that by alternating inside and outside tasks by days, a realistic timeline could be generated. It should be noted that housekeeping and hygiene require a considerable time allotment to avoid undue stress on the crew.

Suit donning and doffing time can be reduced by performing a "crew exchange" for extravehicular tasks. The crew exchange requires each subject's extravehicular activity to take place at a single location on the simulated traverse, one subject egressing from the vehicle immediately after the first subject had ingressed from his, outside activity. This procedure requires each subject to don and doff his suit only once a day, instead of twice a day, with a total time saving of about 2 hr .

The application of these results to actual missions suggests that 2-man crews would be seriously curtailed with regard to the amount of scientific work they would be able to perform on the lunar surface.

Estimates of the relative energy expenditures required to perform simulation tasks were determined by measuring the subject's maximum aerobic oxygen consumption prior to and immediately after the l8-day simulation. The methods of indirect, open-calorimetry, permitting the contindous analysis of expired gases during treadmill runs, were used (Reference 7). Heart rates and oxygen consumption during submaximal and maximal work were measured as a function of time on the treadmill. From these data, plots of heart rate vs oxygen consumption were determined for each subject. A representative plot is shown in Figure 2-2.

These relationships essentially "calibrate" each subject, providing a means whereby relative oxygen consumption during various tasks performed in the simulation can be obtained directly from the heart rates measured during performance of those tasks. In addition, heart and respiratory rates obtained during a variety of task performances can be treated as a ratio of the measured value P, to the value $P c$, achieved during maximal work. This permits the comparison of each subject's physical effort as a percentage of his own steadystate maximum. Figure 2-3 shows P/Pc value for heart rates averaged over the simulation tasks for each subject. It is apparent that tasks requiring large-muscle-group activity can be distinguished from those tasks which are basically sedentary. A comparison of P / Pc values shows that both subjects worked at similar levels of their maximum work capacity for any given task. No trends in heart or respiratory rates for any task were observed during the simulation. For this simulation, only tasks involving the active use of the pressure suit required high work outputs as measured by heart and respiratory rates.

Though the time allotted for extravehicular activities was unrealistic, it was a design goal to make the energy expenditure during outside activities approach or exceed the present Portable Life Support Systems (PLSS) rated capacities. For this purpose, treadmill walking in the pressurized suit was

Figure 2-2. Relationship of Oxygen Consumption and Heart Rate Operator 1

Figure 2-3. Mean Heart. Rate Task Profiles as a Percent of Maximum Work - ($\mathrm{P} / \mathrm{P}_{\mathrm{C}}$) 100
required during outside activities. Based on the heart rates observed during these activities and those obtained during the measurement of oxygen consumption, estimates were made of the oxygen consumption during inflated suit treadmill activity*. The Portable Life Support System (PLSS) currently considered allows energy expenditures of $5.04 \mathrm{kcal} / \mathrm{min}(1200 \mathrm{Btu} / \mathrm{hr})$ for $4 \mathrm{hr} ; 6.73 \mathrm{kcal} / \mathrm{min}$ ($1600 \mathrm{Btu} / \mathrm{hr}$) for 3 hr ; and $8.40 \mathrm{kcal} / \mathrm{min}(2400 \mathrm{Btu} / \mathrm{hr}$) for short periods of 5 to 10 min (Reference 4). The estimated oxygen consumption data obtained during treadmill exercises, including walks up to 2.6 mph , showed that the rate of energy expenditure was in excess of these maximum allowable PLSS rates. Approximately 8 to $12 \mathrm{kcal} / \mathrm{min}$ were expended during $10-\mathrm{minute}$ walking intervals. Figure $2-4$ shows a typical treadmill profile where oxygen was consumed at an estimated average rate of 2.6 liters per min. Averaged over 17 full simulation days, it was estimated that the two subjects consumed 630 and 670 liters of oxygen per day, respectively.

During the simulation, selected emergency situations were evaluated. The simulated emergency rescue of a crew member injured on the lunar surface indicated that power assistance is mandatory for a single crew member to get a disabled crew member into the airlock. Even with power assistance, the single crew member performing the rescue must adhere strictly to pre-established procedures in order to get both himself and the injured crew member into the airlock. The problems associated with manually returning an injured crew member some distance from the shelter (e.g., several hundred yards) are believed to be nearly insurmountable by a single crew member. (This type of rescue was not simulated, all rescue being performed within 20 ft of the shelter.) This belief is based primarily on the excessive cumulative energy expenditure expected of the highly motivated crew member performing the rescue to get to the injured crew member rapidly, secure him, transport him to the shelter, and get both himself and the injured astronaut into the airlock. The effects of one-sixth gravity on emergency rescues are not known.

The presence of a third crew member would greatly alleviate this situation, even if his only contribution were to assist in backpack donning and in getting the injured crew member into the shelter.

BASELINE SCIENTIFIC MISSIONS

Four baseline scientific missions have been described by NASA (References 4 and 5). These missions and the scientific tasks to be accomplished are shown in Table 2-4. As has been noted before (Reference 2), baseline missions differ principally according to the location at which they are performed. Table 2-5 presents the approximate times required per scientific measurement as listed by the Bendix study. (Reference 1). On the basis of task times in the Lunex II simulation and further unpublished simulations of scientific

[^0]Los Angeles, California

minutes
9 Full Days in Simulator

TABLE 2-4
NASA SUMMARY OF MEASUREMENTS MADE FOR BASELINE MISSIONS

Task	$\begin{aligned} & \text { Expanded } \\ & \text { ESS } \\ & \text { (LSSM) } \end{aligned}$	$\begin{aligned} & \text { Hyginus* } \\ & \text { Rille } \\ & \text { (LSSM) } \end{aligned}$	Alphonsus* (LSSM)	$\begin{aligned} & \text { Alphonsus } \\ & \text { (LSSM/LFV) } \end{aligned}$
Topographical Surveying	X	X	X	X
Surface Geology	X	X	X	X
100-ft Drill		X	X	
10-ft Drill	X	:	X	X
LEM/Shelter Laboratory Geology	X	X	X	X
Gravity	X	X	X	X
Magnetic	X	X	X	X
Seismic	X	X	X	X
Telluric Currents	X	X	X	
In Situ	X	X	X	X
Core-Hole Logging	X	X	X	X
Nuclear	X	X	X	X
Gas Analysis	X	X	X	X
ESS	X	X	X	
X-ray, Optical, and Radio Astronomy, Phase I	X	X	X	X

*Also included in Bendix document (Ref. 1)

TABLE 2-5

TASK COMPLETION TIMES PER MEASUREMENT FOR ONE MAN
(BENDIX AND HONEYWELL ESTIMATES)

Basic LSSM Sortie Tasks at Each Stop		
Measurement	Completion Time as Listed In Bendix Report	As Determined For This Report
Topographical surveying	5 min per survey and 5 min extra if survey marker erected	5 min and 1 min extra for survey marker photography and radiometry
Sample collection	1 min per reading	4 min per reading (8 cameras used)
Mapping	1 min per sample (minimum)	3 min per sample collection
Gravity measurements	1 min per plot	3 min per plot
Magnetic fields measurement	5 min at 1 km intervals	Time shared with above three measurements at each stop
Nuclear measurements	2 min per activation, LSSM	
Total Time Per Stop:	28 minutes (5 min alloted in LSSM timelines)	26 minutes

Alternate LSSM Sortie Tasks		
Measurement	Completion Time as Listed in Bendix Report	As Determined For This Report
Seismic recording deep refraction shallow refraction reflection	150 min to lay geophone net, $30 \mathrm{~min} / \mathrm{shot}$ $45 \mathrm{~min} / \mathrm{shot}$ $30 \mathrm{~min} / \mathrm{shot}$	Using two men, 50 min to lay net, $15 \mathrm{~min} / \mathrm{shot}$ $45 \mathrm{~min} / \mathrm{shot}$ $30 \mathrm{~min} / \mathrm{shot}$
Telluric currents measurement	150 minutes	150 minutes
$\frac{\text { In } \frac{\text { Situ }}{\text { mements }}}{\text { asurement }}$	30 min per series	20 min per series
Drill 3-m hole	50 min astronaut time	50 min
Drill 30-m hole	5 hours astronaut time	5 hrs
Log hole, nuclear	150 min astronaut time	150 min
electrical induction, and sonic velocity readings		
Gas analysis	10 min for each series of readings	10 min
ESS emplacement	50 min to drill $3-\mathrm{m}$ hole, $3-6 \mathrm{hrs}$ to emplace ESS	3 hr 15 min total time, using two men

activity during sortie stops which have been performed, some of the times required during sortie stops have been changed. For instance; the: NASA guidelines specify that during each stop on a standard LSSM sortie; gravimetry and nuclear measurements must be made, samples photographed and. collected, the height or depth of local surface irregularities measured, and the position of these irregularities noted on the LSSM map., In addition, the present location of the LSSM must be plotted and noted on the map, multiband photographs and spectrographs (eight cameras in all) made, a survey marker installed, and data radioed to the shelter. Operation of the nuclear measurements package alone involves removing it from the LSSM, carrying it 50 ft away, turning on the various sensors in sequence, noting readings, and then returning it. NASA specified 5 min for each stop, with one man assigned to do all these tasks. We have determined that one man would take about 25 min , and that two men would take 15 min .

All the timeline changes we have made apply to the LSSM sorties and are summarized in the last column of Table 2-5. These changes were used in drawing the three-man LSSM timelines, with the result that the amount of territory covered and stops made had to be somewhat curtailed. We believe that the sorties as specified in this report still conform to the scientific goals set forth for the early lunar missions. The missions themselves, the kinds of LSSM and local sorties to be made, and the data gathered remain the same in our considerations.

Baseline Mission Timelines

Four different sets of timelines have been prepared for 3-man, 14-day lunar missions. They are:

Detailed LSSM sortie times and tasks for each of the four basic sorties.

Summary times and workloads for the 11 local ESA's defined by NASA.

Twenty-four-hour crew activity timelines for two typical mission days.

Fourteen-day mission schedules, showing sortie sequences for all four baseline missions and the effect of sortie scheduling and using 3- rather than 2-man crews on scientific task times, airlock cycles, and PLSS recharges for the Alphonsus and Hyginus Rille missions.

All of these times and schedules have been changed from those originally proposed by Bendix and set forth in the NASA guidelines. As mentioned in the last subsection, these changes were due to longer. LSSM sortie task times being used. and to fewer hours per day being available to scientific tasks from the results of the Lunex II simulation.

As a start, it was found that LSSM sorties scheduled for 6 hours would take about $6-1 / 2 \mathrm{hr}$ to complete. Then, using the results of Lunex II, we determined that only about 7 to $7-1 / 2 \mathrm{hr}$ would be available per day for scientific tasks. These findings led to two major changes: First, only one sortie could"be scheduled per day instead of one 6-hr LSSM sortie and one 3-hr. local ESA as in the NASA guidelines. Second, sortie routes and goals had to be modified because fewer LSSM and local sorties are available on a 14-day mission.

In the following tables a number of abbreviations are used to conserve space. These are defined as follows:

C/O	Checkout
ELS	Early Lunar Shelter
ESS	Emplaced Scientific Station
ESA	Extra-Shelter Activity
LFV	Lunar Flying Vehicle
LSSM	Local Scientific Survey Module
NMP	Nuclear Measurements Package
PLSS	Portable Life Support System
RTG	Radioisotope Thermal Generator
MG	Muscle Group VL, L, ML
Large group activity, e.g., walking, carrying objects - very large, large, or medium large	
S	Small group activity, e.g., adjusting instruments, sitting

Tables 2-6, 2-7, and 2-8 show the sortie schedules worked out for the Alphonsus and Hyginus Rille, Expanded ESS, and Alphonsus LSSM/LFV missions. Each of these takes 14 days, with the first and last days devoted to shelter and LEM-taxi checkout. One local ESA is scheduled for the first day of each mission. Eleven local ESA's are scheduled instead of the 14 indicated in the NASA guidelines, and 8 instead of 3 LSSM sorties. Table 2-6 has been expanded to show the differences in time-on-surface, man-hours-on-surface, man-hours for scientific tasks inside, airlock cycles, and PLSS recharges for different mission plans. Similar expansions can be performed on Tables 2-7 and 2-8 with much the same results. The emergency findings of the Lunex II simulation showed that rescue of a disabled crewman would be much more likely if one man pushed and the other pulled the third man into the airlock. For this reason the differences between holding the two ESA's (scheduled for half the days)

Page Intentionally Left Blank

TABLE 2-7
EXPANDED ESS MISSION SORTIE SUMMARY

Day	Sortie	Description	Hours on Surface	Remarks
1	ESA No. 1	Unload LSSM	2:00	
2	LSSM No. 1 ESA No. 5	C / o drive on LSSM; lay geophones	$\begin{aligned} & 3: 20 \\ & 3: 00 \end{aligned}$	No $30-\mathrm{m}$ drill on this mission, so ESA's 2 and 3 omitted
3	$\begin{aligned} & \text { LSSM No. }{ }^{2} \\ & \text { ESA No. } 8 \end{aligned}$	Emplace ESS; seismic charge detonations	$\begin{aligned} & 5: 12 \\ & 2: 00 \end{aligned}$	
4	LSSM No. 3	Sample collection and geophysical measurements	6:28	
5	LSSM No. 9	Satellite ESS emplacement	6:32	
6	LSSM No. 10	Satellite ESS emplacement	6:32	
7	LSSM No. 11	Satellite ESS emplacement	6:32	ESA's 6 and 7 omitted because no $30-\mathrm{m}$ hole
8	$\begin{aligned} & \text { ESA No. } 4 \\ & \text { ESA No. } 9 \end{aligned}$	ESS activation; Phase I astronomy setup	$\begin{aligned} & 3: 00 \\ & 2: 30 \end{aligned}$	
9	ESA No. 10 ESA No. 11	X-ray and optical astronomy; radio astronomy	$\begin{aligned} & \hline 3: 00 \\ & 3: 00 \end{aligned}$	
10	LSSM No. 4	Deep seismic charge emplacement	6:30	
11	LSSM No. 5	Same as LSSM 3	6:28	
12	LSSM No. 6	Same as LSSM 4	6:30	
13	LSSM No. 7	Same as LSSM 3	6:28	
14	Transfer to LEM taxi			

TABLE 2-8
ALPHONSUS LSSM - LVF MI SSION SORTIE SUMMARY

Day	Sortie	Description	Hours on Surface	Remarks
1	ESA No. 1	Unload LSSM	2:00	
2	LSSM No. 1 ESA No. 5	C/o drive on LSSM; lay geophone net	$\begin{aligned} & 3: 20 \\ & 3: 00 \end{aligned}$	No $30-\mathrm{m}$ drill and no ESS emplacement so ESA's 2, 3, 4, 6, and 7 are omitted
3	LSSM No. 3	Sample collection and geophysical measurements	6:28	LSSM sortie No. 2 is also omitted
4	ESA No. 8 ESA No. 9	Seismic charge detonation; Phase I astronomy setup	$\begin{aligned} & 2: 00 \\ & 2: 30 \end{aligned}$	
5	LSSM No. 4	Seismic charge detonation	6:30	
6	ESA No. 10 ESA No. 11	X-ray and optical astronomy; radio astronomy	$\begin{aligned} & 3: 00 \\ & 3: 00 \end{aligned}$	
7	LSSM No. 5	Same as LSSM 3	6:28	
8	LSSM No. 6	Same as LSSM 4	6:30	
9	LSSM No. 7	Same as LSSM 3	6:28	
10	LFV No. 1	Photography and sample collection, selected areas	6:00	
11	LFV No. 2	Same as LFV 1	6:00	
12	LSSM No. 8	Same as LSSM 3	6:28	
13	LSSM No. 9	Same as LSSM 3	6:28	
14	Transfer to LEM taxi			

consecutively and concurrently were compared. The latter concept means that during local ESA's two men would be on the surface at the same time, doing different things. Results for four different plans, two with the 3-man crews and two with 2-man crews, are summarized in Table 2-9.

Concept B in Table 2-9 offers considerable advantages in man-hours on the surface and in crew safety during local ESA's. It was chosen as the basis for Tables 2-10 and 2-11, typical $24-h r$ timelines for LSSM and local ESA sortie days.

A definite problem exists on LSSM sortie days, for which no solution appears in the NASA guidelines. This is that, with 6-1/2-hr sorties and two additional hours for suit donning and doffing; almost 9 hr elapse between meals for the 2 -man LSSM crew. Either some provision must be made for eating while in the suit, or the sortie must return to the shelter half way through the mission. Other than this one problem, the $24-\mathrm{hr}$ timelines are realistic and conform very closely to the final times found to be necessary in the Lunex II simulation (see Table 2-2). These times are applicable to days 2 to 13 of all four missions. Normally the two schedules will alternate days to give enough inside scientific time to analyze samples collected on the previous LSSM sortie. In some cases, several long sorties occur on successive days, especially in the expanded ESS mission where sample collection is not common. Days 2 and 3 of the Alphonsus and Hyginus Rille missions are unusual in that the two external ESA's must be carried out consecutively since one of each of them takes a 2-man crew. The extra time required on day 3 of these missions must come from crew rest time and report-writing time on that day.

Strict adherence to a detailed timeline tends to build up stress in crew members, especially if equipment problems or other factors cause deletion of tasks which must be made up later. In the Lunex II simulation (Reference 7), the subjects stated that even a slight perturbation of a functional timeline tended to greatly effect over-all task completion. Based on 18 days of rigorous adherence to a task schedule, the Lunex II subjects requested that all tasks omitted for any reason should be permanently deleted and not reinserted later in the mission.

Sortie Task Timelines

The baseline mission timelines assign blocks of time to the various sorties to be performed. In general, sorties of the same duration can be exchanged since the type of measurements made on many of the sorties are the same. Certain sorties must be performed at the sight called for, since in situ measurements are required at specified locations. The only severe constriction on sortie scheduling is that seismic shots must not be made after the astronomy experiment equipment has been set up. Setting up and performing Phase I astronomy studies takes two days of local ESA's.

Detailed LSSM sortie task timelines are shown in Tables 2-I2 through 2-15. The sortie time increments are derived primarily from Bendix studies (Reference 1), modified as shown in Table 2-5. Notes on the differences in each sortie and a sortie summary are attached to each timeline. These four timelines handle most of the sorties which have been proposed for early lunar missions

TABLE 2-9
SUMMARY OF MISSION DIFFERENCES

	Crew Activity Alternatives	Total Time on Surface, $\mathrm{hr} / \mathrm{min}$	Total Man-Hours on Surface	Total ManHours for Inside Tasks	Airlock Cycles Required	PLSS Recharges Required	Crew Safety Probabilities During ESA
	A-Consecutive ESA's	75:24	126:48	83:10	25	44	Low on local ESA; high on LSSM sorties
	B-Concurrent ESA's	63:44	131:48	82:15	16	47	High on local ESA and on LSSM sorties
	C-Consecutive ESA's	75:24	75:24	51:00	26	26	Low on local ESA; impossible on LSSM
	D-Concurrent ESA's	65:54	84:24	57:30	16	31	Fair on local ESA; impossible on LSSM

* Where crew safety is defined as the probability of rescuing a disabled crewman on the surface, including getting him into the airlock and/or applying a patch to a torn suit in time.

TABLE 2-10
THREE-MAN, 24-HR TIMELINES FOR LSSM SORTIE DAYS, ALPHONSUS OR HYGGINUS RILLE MISSIONS
(CONCEPT B, TWO MEN ON SURFACE)

TABLE 2-11
THREE-MAN, 24-HR TIMELINES FOR LOCAL ESA SORTIE DAYS, ALPHONSUS OR HYGINUS RILLE MISSIONS (CONCEPT B, TWO MEN ON SURFACE)

TABLE 2-12
THREE-MAN TIMELINES FOR FIRST LSSM SORTIE
(APPLIES TO ALL MISSIONS)

\cdots	Laxm	rem	n(tum)	-1	\%	100 $1 .$.	\cdots	c.an...	Tamel	, mel	,	m	\%	"-:-	\cdots	commer	-	1	Atmen	-mmer	\%isk	\cdots	${ }^{\text {mis}}$	c-ame
	Osum	"		sums	-		$\stackrel{1}{4}$		Omier	-		morm	*	\cdots		c-mine -mo.	manr	10		Cme	\cdots	\ldots		
,	นus			-	\cdots	--	$\stackrel{ }{ }$		"	,	cllmatam...	\cdots	\ldots		Verrer	swime			\%are.	.,	".	,	
,	Lam	-	bricemume ion	Cmamem	...	-.-	-		sm	-	Tommexamorn	mometita	-	Tomom ame	,		\%mar	"	Comixut	yersis.	2	",	N.	
-	saram	"			易		t		\%ss	${ }^{3}$			$\begin{aligned} & n \\ & ״ \end{aligned}$:		sstar	"		v.ant	\cdots			
-	\ldots	"	smom	A.0.0.	...	\cdots	\cdots		$\stackrel{1}{4}$	"	ans.	...	\cdots	..-			smate	$:$	momoter	.',	\cdots	-	.	¢...1.
-	manco	"	\%-	\%	. \cdot	2mixamer	\checkmark	 -	ssm	*	" ${ }^{\prime \prime}$	\cdots	\cdots	\cdots	,		mmior	"	A.m.	\cdots	*	
,	ıss	"	oriol ta			*-1..	,		ssu	"	A-2.	\cdots	\cdots	mom			-	"		...	\cdots		-	
-	s.r.a.	"	runay			$4 \times$	\pm		Lisu:	\cdots	A, $0 \cdot$		murr	1	\cdots				.	
-	Lom	"	orm			-	-			"	Hintix	\cdots	\cdots				smem	${ }^{2}$	Satio mex				.	
\cdots	somex	\because	ronum.			-	4		Lss:	8	Amat	\ldots	\cdots	\cdots	\cdots		\cdots	\because	A...	\ldots	\cdots	...		
"	12 sm	"				5m+1...0.	,		Lsu	"	A+mis.		.	-	\cdots		murn	"	mimer	\ldots	\cdots	..-	\cdots	
${ }^{1}$	\%	"	\%	Cimen mas me.	:' ${ }^{\prime}$	cswimmour iom			1	13	边	:1anm	\%.	s.en .axcmen	'	cosurex	-	,	Hatiow	mo."'			\cdots	
Numex x																								
							*ONT te summant 								nown									

5
Hestrow
and

Page Intentionally Left Blank

TABLE 2-13
THREE-MAN TIMELINES FOR SECOND LSSM SORTIE (APPLIES TO ALL MISSIONS EXCEPT ALPHONSUS LSSM - LSV; EXPANDED SATELLITE ESS SORTIE IS FOR EXPANDED ESS MISSION)

\%	1 Lemm	rim	nemm,	ramm	Fim	nem	\cdots	r-m.	Loxum	rim	ィ*m,	-rnow	Nim	"mu u*,	mo	c.mmem.	morom	rim	Anver	-	\%	nomum.	мп	c-n-
	-	"	conemuthousx		.	Tixuminats	!		\%aitis	-	com"	ru..."m" ${ }^{\text {".t }}$	'i	Litisuruma mot	$\stackrel{1}{2}$		mhr	"		Nomon	\cdots	...	,	\%
,	unm	${ }^{\prime}$	ormim	c-mmeme	...	m,	-	\%ne	Lum	"	"uaterstor meater	\cdots	\cdots	Two..notomum	-		mant	"		-um	...	-, -m,	,	-
.	.me.	"	Tomedre mill -mb	;-man	"	- Lantire	$\stackrel{ }{ }$		\%rat	\cdots		's\%"me	*	- ${ }^{\text {amannam }}$	2		antr	*	Mamm	-	\cdots	-	"	Piximm muma
,	satrex	-	9untincmimu	15	ii		nt		\cdots	${ }^{\prime}$	2ixinise	[ix.....anss	: ${ }^{\text {a }}$	$1=$	$\left.\begin{gathered} 1 \\ \therefore \\ 2 \end{gathered} \right\rvert\,$		mmam	${ }^{20}$			\cdots	vom nowammome	*	
	mixa	$"$	miners	-mpis	"	simemomess	\checkmark		Sumat:	י			T		,		mintict	:	Fimemis		\cdots	5mix	:	
-	sume	"		'…44	"	2amben mam	$\stackrel{1}{4}$		\%	${ }^{\circ}$			\%	5entorey	t		sm"0	\square	compemmer	-riramer	\cdots	s-mu4	,	
	\%.ic*	10	Su:Mmix		\cdots	. .	,		Sutiom	10	smm		.	\cdots	,		-	${ }^{\circ}$	mantor man	\cdots	...	somer	,	
-	usm	"	Dour 10.0	restion	.	n,	-		$\stackrel{1}{ }$	\because	min csix	...	\cdots	\ldots	,		m"M	"			\ldots	smen	,	
-	witict	${ }^{\circ}$		P11s, mm, met	:	Conmetatutur	\checkmark		\%	"	rus	ress	"	4,	$\stackrel{ }{ }$			\cdots	5mamme					
"- "momer																								
MOTES ON THS \$ONTE T" 						GOATIE Bummany 					 \qquad A1 1 the stax 													

Page Intentionally Left Blank

table 2-14
THREE-MAN TIMELINES FOR THIRD LSSM SORTIE
(APPLIES TO ALL MI SSIONS)

Page Intentionally Left Blank

67-1964-6

TABLE 2-15
three-man timelines for fourth lssh sortie (APPLIES TO ALL MISSIONS)

Page Intentionally Left Blank

involving an LSSM. In some cases, such as ESS emplacement, further sorties of the same type can be easily generated simply by increasing the travel times. (See notes for sortie 2.) Others, such as the basic measurements sortie, have the same timeline but different directions on different days. Routes will vary from the simple triangular tracks shown, depending on the kind of material which is being traversed. Representative sortie routes based on lunar contour maps are published in the basic Bendix study (Reference 1). The MG column in the timelines is included as a rough measure of workload. It indicates the approximate levels of effort involved in each task as a function of the muscle group involved. These measures were used to ensure that the workload of each man did not get so high that he would use the capacity of two PLSS's before the end of the 6-1/2-hr sorties.

Table 2-16 is a condensed summary of the 11 local ESA's which were considered for this report. The sortie mission, crew required, and time required were drawn from Bendix and NASA data. Effort estimates were made in the same way as in the LSSM timelines, again to ensure that one PLSS would be enough for each sortie. Two of the sorties, 5 and 8, use the LSSM to transport one man about 2 km out and back. These were classified as local ESA's instead of LSSM sorties because only one crewman is used and because of their short duration. Some of the sortie times have been shortened because the workload rate was too high to allow one PLSS to supply 3 hr of surface time. Most ESA's are performed in pairs under concept B, the one chosen for the $24-h r$ timelines. This would entail two men on the surface at the same time, working on different projects but in the same vicinity.

Contribution of a Third Crew Member to Crew Safety and Mission. Success

Crew safety and mission success are significantly enhanced by the addition of a third crew member. The contributions to crew safety are particularly evident in the following areas:

Emergency rescue of a disabled crew member.
Reduction of task work loads by time-sharing activities.
Increasing the range of visual contact on the lunar surface.
This has the secondary implication that a communication failure between one crew member performing an ESA and the shelter need not terminate activity providing communication and visual contact between at least two of the crew members exists.

An emergency rescue of a disabled astronaut by one crew member is generally not feasible unless some form of power assistance is provided (Reference 7). Two crew members may be able to effectively retrieve a disabled crew member by manual means. Emergency rescue simulations using 3-man crews are recommended for further study.

TABLE 2-16
SUMMARY OF LOCAL SURFACE SORTIES (LOCAL ESA's)

No.	Description	Number of Crew	Total Time (hrs:min)	Muscle Group Involved	Range (km)	Missions Used on
1	IInload and set up LSSM; check external gear; lay out erosion samples	2	2:00	$\begin{array}{r} \text { VL }(0: 20) \\ L(1: 00) \\ S(0: 40) \end{array}$	0.5	All
2	Begin 30-m hole drilling	1	2:00	$\begin{aligned} & \text { VL }(0: 40) \\ & \mathrm{L}(1: 00) \\ & \mathrm{S}(0: 20) \end{aligned}$	0.0	Alphonsus, Hyginus Rille
3	Complete $30-\mathrm{m}$ hole	1	2:00	$\begin{aligned} & \text { VL }(0: 10) \\ & \text { L }(1: 00) \\ & S(0: 50) \end{aligned}$	0.0	Alphonsus, Hyginus Rille
4	ESS activation	1	3:00	$\begin{aligned} & \text { VL (0:00) } \\ & \text { L (1:00 } \\ & \text { S (2:00 } \end{aligned}$	2.5	All but LSSM/LFV mission
5	Lay out geophone net; set off one charge	1	3:00	$\begin{gathered} \text { VL }(0: 00) \\ \mathrm{L}(1: 00) \\ \mathrm{S}(2: 00) \end{gathered}$	4.0	All
6	Nuclear and electrical logging of $30-\mathrm{m}$ hole	1	2:00	$\begin{gathered} \text { VL }(0 ; 00) \\ \text { L }(1 ; 30) \\ \text { S }(0: 30) \end{gathered}$	0.0	Alphonsus, Hyginus Rille
7	Sonic velocity measurements on $30-\mathrm{m}$ hole	1	2:00	$\begin{gathered} \text { VL }(0: 10) \\ L(1: 20) \\ S(0: 30) \end{gathered}$	0.0	Alphonsus, Hyginus Rille
8	Seismic charge emplace and ESS checkout	1	2:00	$\begin{aligned} \hline \text { VL }(0: 10) \\ \text { L }(0: 40) \\ \text { S }(1: 10) \end{aligned}$	4.0	All
9	Phase I astronomy experiments setup	1	2:30	$\begin{array}{r} \text { VL }(0: 30) \\ \mathrm{L}(0: 30) \\ \mathrm{S}(1: 30) \end{array}$	1.0	All
10	Optical and x-ray astronomy experiments and observations	2	3:00	$\begin{array}{r} \text { VL }(0: 00) \\ \text { L }(0: 30) \\ \text { S }(2: 30) \end{array}$	1.0	All
11	Radio astronomy observations	2	3:00	$\begin{gathered} \text { VL }(0: 00) \\ \mathrm{L}(0: 30) \\ \mathrm{S}(2: 30) \end{gathered}$	1.0	All

For safety reasons, 2-man LSSM sorties are considerably more reliable than l-man sorties. If a surface operator is disabled during an LSSM sortie, a second crew member is immediately available to provide.assistance. If the LSSM is also disabled, the additional crew member could radio the base shelter for an LFV rescue. (The present LFV concept, however, allows room for only two crew members. The remaining astronaut would have to either await the return of the LFV or walk back to the base shelter.)

The safety of the 1 -man LSSM sortie with two men remaining in the shelter is not as greatly improved by the addition of a third crew member since timecritical assistance to the extravehicular crew member is no better than that provided by a 2-man: crew. If a single crew member on an LSSM sortie is disabled, one of the two mem in the shelter will perform the LFV rescue while the other will operate any automated rescue equipment in the vicinity of the shelter upon the return of the LFV and assist the disabled crew member inside the shelter.

As in the LSSM sorties, the prime: advantage of the third crew member during emergency conditions occurring during close.ESA's is that one of the two crew members is immediately available to assist the other crew member should he become disabled on the lunar surface. For a I-man close ESA, the third crew member's activities are limited to monitoring the rescue operation, operating any automated rescue equipment associated with the shelter, and assisting the disabled crew member inside the shelter.

From the standpoint of mission success, 3-man crews have definite advantages over $2-m a n$ crews, in that:

Eating times would not be increased since, for major meals involving rehydration of food, food preparation time would be the same and eating would remain a time-shared activity. Preliminary studies which we have made (unpublished) indicate little difference in the time required for one man versus that required for two men to prepare and eat a 700-cal meal.

More man-hours could be spent on the lunar surface by having crew members work in pairs during local ESA's. This is a difference of 5 hours in the 3 -man missions, and a difference of 56 hours over the 2 -man missions we have considered. This is an increase of 61 percent over the 2 -man missions.

The time required for three crew members to don and doff their pressure suits should be about the same as that required for 2-man crews if their tasks are time-shared.

More uninterrupted time would be available for a single crew member to perform scientific tasks inside the shelter during paired crewmember ESA's. This assumes that the monitoring time and stress level of the crew member remaining in the shelter is reduced by the presence of a second man on ESA. Also, during nearby single-member ESA's, one crew member is

AIRESEARCH MANUFACTURING DIVISION
completely free to perform inside scientific tasks while the other man monitors the condition of the surface crew member: This method of ESA performance yields some extra scientific time but was rejected because of the lowered safety factor in case the outside man was disabled. (See Table 2-6.)

It was pointed out earlier in this report that during the Lunex II simulation the 2-man crew felt that geological analysis inside the shelter was too time-consuming and should not be considered for lunar missions. Since a prime goal of such missions is to return samples to the earth and since the weight of samples is limited, some analysis must take place on the moon. The presence of a third man increases the inside scientific time available by 31 hr or 60 percent. This should provide enough time to complete geological tasks.

With a 2-man LSSM crew, the workload of a single man could be alleviated by alternating the high-workload tasks. Gravity measurements and other automated measuring devices could be read by the crew member remaining on the LSSM during stops. The man who leaves the LSSM would then be concerned with sample collection, marker development, and local terrain surveying. In either case, with one or two men, meaningful measurements probably cannot be made during $5-m i n$ stops. Such stops could be made with two men and some data gathered. The value of samples collected during short periods may depend on chance rather than careful selection. Six-hour sorties are further complicated by the time and effort required to exchange PLSS's, a situation which is alleviated in the 2 -man sortie.

Experimental data are needed concerning the interaction of crew members with the LSSM before any firm answers can be given to the sortie length and workload problems. In particular, the time it takes to disembark, remount, and exchange PLSS's for 1 - or 2-man crews should be known, and the degree of automated data collection, transmittal, and recording which will be available during these sorties should be specified.

Lunar Night Effects on Missions
During the middle of the lunar night, when the earth is full, the level of illumination is estimated to be about 10 times that of a full-moon night on earth.

Present lunar missions are programmed only for the first five days of the $2-w k$ night period, and the evening and morning of the lunar night are the darkest times. Just after local sunset near the center of the near-side the earth is seen only as a thin crescent, and its light does not become appreciable until about two days after sunset.

The effect of these conditions on shelter operations would be negligible, and it would be profitable to schedule as many inside tasks as possible for the last five days of the mission. During the last two of these days, earthlight would be quite bright, and ESA's without extensive artificial illumination would again be practical. Several safety factors are apparent during the first period of darkness. First is that any LSSM sorties would have to be provided with bright headlights to avoid hazardous obstructions. It is not likely that driving speed would have to be reduced over the $6 \mathrm{~km} / \mathrm{hr}$ now planned for daylight sorties. Beacons would be necessary on the shelter, the LSSM, and the individual surface suits to prevent outside operators becoming lost. Results of the current Gemini flights indicate that point sources of light such as are used as beacons on earth may not be easily visible in a vacuum, since there is no scattering of the light. This is a problem which will have to be settled by experimentation. Bright illumination should also be provided in the vicinity of the shelter, and this may have to be used during the daylight hours as well, if scattering from nearby material is not enough to illuminate the shadow cast by the shelter. At no time should one man be allowed on the surface alone when it is very dark, since the probability of a fall which would damage the suit or the man is much higher in the dark. Flares should be carried to aid in emergency location if visual contact is lost.

ALTERNATE SCIENTIFIC MISSION DEFINITION

General

A lunar shelter program should be capable of revision to meet changing scientific needs between the time of initial planning and the actual delivery to the moon. A search of current lunar scientific missions literature was conducted to reveal the kinds of alternate missions which might become important during this period. The selection of these was based on the possibility of extra time and equipment becoming available, the likelihood of basic scientific tasks being completed on earlier missions requiring expansion of the goals of the ELS program, and improved technology making possible more sophisticated missions.

About 500 documents related to lunar activities were examined during the first phase of the literature search; 50 of these had some bearing on scientific missions. The most important and comprehensive of these are cited in the list of references at the end of this report. The final step in the literature search was to define about 20 promising missions which would be compatible with ELS weight and time allotments. This was done by compiling data from all the references listed. The names and descriptions of the 18 missions finally compiled are listed in the subsection below. They were originally listed under three general science headings but have been regrouped in this report by relevance, importance, and completeness of data available.

The first three missions were expanded, and timelines were prepared for them. This information is presented in a subsequent portion of this subsection. Each of these three missions is described, additional requirements in equipment and astronaut time are listed, and general changes from basic mission timelines given. Representative timelines for each mission are also included. For the first two alternate missions, Resources Investigaticns and Near-Side Radio Astronomy, 3-man operation is proposed, and the timelines are for three men.

The third alternate mission, General Observations with the 40-in. telescope, is now planned as a 2 -man mission. The reasons for this are detailed in the requirements section of that mission description.

Alternate Scientific Missions List

This subsection describes the 18 scientific missions originally specified by Honeywell. They have been ranked for relevance to general lunar missions goals, scientific importance, and most importantly, availability of timelines and equipment specifications. The first three missions are listed as candidates for alternate mission definitions.

1. Mission 1

This mission involves resources investigations, using basic geological experiments to gain information on water sources, subsurface cavities for storage and shelter, suitable shielding materials, geothermal energy available, gases and liquids present in rocks, solar energy utilization, and mineral deposits. These studies require addition to the timelines on analysis of geological experiments and some extra time during experiments themselves. The exact amount of additional time required is not known, but approximate data are available.

Resources investigations can be integrated with current geological and geophysical timelines. These tasks involve additional measurements and sample collection of LSSM traverses and longer missions close to the ELS. Little extra equipment is required. It is felt that resources specifications will be necessary for further mission planning and that this task has high priority for early missions.

2. Mission 2

This mission involves radio astronomy from the nearside. Three programs have been defined for small-antenna equipment: nondirectional radio observations, directional observations on the 20 major discrete sources of extrasolar system radio noise, and submillimeter radio observations. Very complete timelines and equipment guides are available in this mission.

The radio astronomy experiments recommended in this task are not included in Phase I, II, or III astronomy studies now being considered. Data gained from this task will be of substantial importance in outlining future near- and far-side radio missions. Equipment can be included in any of the current astronomy missions.

3. Mission 3

This mission involves the use of a 40-in. telescope for general observation programs in astronomy. Seven observation programs have been defined for nearside missions applications. They are: 1 through 3 from Mission 12, three additional spectrography programs, and a-laser, range-finder-augmented, seasurface, height measurement study using a laser that is not yet a state-of-theart instrument. The $40-\mathrm{in}$. telescope is a later lunar mission instrument with only 2 -man operation now planned. Major modifications to a shelter are necessary with this instrument unless it is mounted on a separate LEM descent stage.

The next 15 missions have also been ranked. They are candidates for alternate missions, but is was felt that less data existed on these, and that the first three missions; listed above, were more critical for early lunar missions.

4. Mission 4

This is a series of nine experiments to determine the effects of lunar environment on human performance and capabilities. These include the effects of breathing various gas mixtures under reduced gravity conditions, bone demineralization studies, cardiovascular performance, psychological studies, vision studies, work capability determination, metabolic costs in reduced gravity, clinical monitoring, and bioassays of body fluids. Hourly timelines are available, and the equipment required is state-of-the-art except for some biotelemetry systems.

5. Mission 5

This mission consists of alternate particle and field experiments to supplement those specified in the NASA guidelines. Included in this series of experiments are three studies dealing with solar wind interaction with geomagnetosphere and solar particle scattering and reactions. Detailed equipment lists and timelines to $10-m i n$ levels are available.

6. Mission 6

This mission includes a series of experiments to extend the basic geochemistry investigations using neutron activation methods to determine the composition of the lunar surface material. Some timeline information and initial equipment requirements are known.

7. Mission 7

This mission consists of additional geophysical experiments not considered in the NASA guidelines. Four experiments are defined on surface magnetic susceptibility, subsurface electrical sensitivity, surface electrical survey, and vertical temperature change lagging. Equipment and timeline guides are available. All equipment is state-of-the-art.

8. Mission 8

This mission includes additional geology experiments to determine the extent of differentiation and segregation of lunar materials. The four experiments proposed are chemical analysis of materials using X-ray fluorescence, density measurements by flotation, chemical analysis of solids by mass spectrometer, and in situ infrared reflectance and emissivity measurements to correlate with orbital measurements. Basic equipment specifications and general or hourly timelines are available.

9. Mission 9

This mission consists of a series of geomorphology experiments to determine the relative importance of internal and external forces in shaping lunar topography. These studies involve the use of a quadruple mass spectrometer to analyze lunar gases, both general and near sources of emission. Hourly level timelines are available for early experiments.

10. Mission 10

This mission is designed to determine the biological effects of the lunar environment and includes six experiments dealing with somatic, genetic, and sterilizing effects of low-g, 2-week daylight periods, radiation, and tempera-m ture found on lunar surface. Information is available for hourly 2- or 3-man timelines, as are approximate equipment weights and volumes.

11. Mission 11

This mission involves radioactive safety and levels measurement, involves experiments in shielding for time and thickness variables, biological samples exposure during EVA, comparison of surface dust removal techniques for suits and equipment, and radiological monitoring. Ten-minute timelines are available.

12. Mission 12

This mission includes representative observation programs using a 12 -in. optical telescope. Six programs are as follows: (1) trial observations to test suitability of lunar surface location for an optical observatory; (2) general astronomical high-resolution photographs of solar system and stellar objects in the $1000-A$ to $3000-A$ range; (3) photoelectric observation of peculiar stellar objects on wavelengths not received on earth; (4) lowdispersion spectroscopy of stars; (5) wide field (using different optical system) photographic survey of visible sky; and (6) wide-photometric survey of light or intensity distribution of sources. Because of uncertainty of observation times, only hourly timelines are available for some of these programs.

13. Mission 13

This mission consists of planned observations of Earth from the lunar landing site using a 6-in. cassegrainian telescope. The planned observations include atmosphere heat balance, reflectivity and albedo, auroral and airglow emission, ultraviolet scattering by atmosphere, atmosphere sounding by infrared scanning, ocean heat balance (two experiments), and multiband ocean photography.

14. Mission 14

This mission calls for the determination of engineering properties of the lunar surface and environment in regard to lunar surface construction capabilities. The experiments proposed are: corrosive action of surface material; rate of dust collection on equipment; effects of leakages from vehicles, shelter, and suits; gas requirements for lunar case drilling; explosive energy coupling in lunar materials; elastomer and polymer degradation; and metal joining techniques comparisons. Since there is uncertainty on equipment required, timelines are not available.

15. Mission 15

This mission entails a study of local lunar magnetoionic medium and surface electromagnetic properties. Six different types of observations have been planned: lunar plasma properties near surface, lunar wave propagation at $10-\mathrm{km}$ ranges on the surface, ambient vector magnetic filed measurements, charged dust spectral analysis, and solar plasma detection.

16. Mission 16

This mission involves research on special astronomical and astrophysical problems. About 15 special research projects have been proposed, but the four highest ranking on the NAA study (Reference 8) to MSFC are Einstein-effect eclipse photography, X-ray observation of interstellar medium distribution, detection of high-energy gamma rays, and high- and low-resolution studies of X-ray sources. Timelines exist for most of these problems only at approximate levels.

17. Mission 17

This mission consists of 40-in. telescope applications in geophysics and meteorology. Five observational programs are now proposed: earth atmosphere circulation measurement in conjunction with other meteorological experiments; earth atmosphere density above $30 \mathrm{~km} \cdot$ measured by stellar.refraction; earth atmosphere study during eclipse of sun; non-terrestrial planetary atmosphere circulations; and determination of planetary albedoes and spectral reflectances.
aIresearch manufacturing division

18. Mission 18

This mission involves 40-in. telescope applications in the particles and fields area. Six observational programs are now defined on sunspot formation and development, prominence of fine structure vs wavelength, flare ejection of material, moderate dispersion scan in ultraviolet region, high scan in the same region, and ultraviolet flare spectra.

Alternate Missions Definitions

1. Resources Investigations

a. Description of the Mission--Successful manned occupation of the moon is directly related to the degree man develops lunar resources to serve his needs. While orbiters and probes will provide fundamental information on these resources, the astronauts in an ELS program, can utilize the array of equipment provided for basic geological missions to get specific information on the availability of resources. The main interests in this mission are:

```
Sources of water
Subsurface voids for shelter
Suitability of available materials for shielding against
    Thermal exposure
    Radiation
    Meteorite impact
    Geothermal energy available
    Mineral deposits
    Methods of mining and processing, mode of utilizing resources
    Opportunities peculiar to lunar conditions
        Low vacuum
            Slowly shifting temperature and light extremes
            Reduced gravity
    Gases and/or liquids in rock pores
Solar energy available
The investigation of these areas will be concurrent with many other activities in the ESA sorties, particularly geological mapping and sample collection of LSSM traverses. Equipment required will be provided by geochemical, geodesic, geophysical missions, and analytic equipment in the vehicle and on earth bases.
```

b. Additional Requirements of the Mission--Since sorties already planned call for extra activity, the sorties must be either longer or more numerous to accommodate the desired activity. This means that three men would be required. Two men could perform this mission but with marginal chances of successful sampling and analysis and with activity in other missions curtailed. There is no extra equipment to emplace or a specific series of extra measurements to make on this mission. Extra ästronaut time requirements would be continuous over the 14-day staytime on LSSM sorties, local ESA and in-shelter analysis of samples. Extra laboratory equipment in the shelter is required for more complete petrographic analysis and for trace-mineral identification. Training of at least one of the astronauts must include a thorough grounding in the kinds of minerals and liquids which may occur, interpretation of magnetometer, gravimeter and seismic recording traces for detection of lowsubsurface caves, and a general resources-oriented prime mission responsibility.
c. Timelines

General changes from basic mission timelines
Additional time required at $1-k m$ intervals on each LSSM sortie for additional sample collection and further on-foot reconnoitering of the stop: 5 to 10 min extra per stop.

Extra tasks for local ESA consist of radiation and thermal sensors emplaced under soil at varying depths, workload determination for moving rocks and soil, and solar panel emplacement and monitoring: One hour extra local ESA per day.

Extra time inside the shelter: Two hours extra sample analysis and classification per day required.

Specific timeline - (see Table 2-17)

2. Radioastronomy on the Near-Side

a. Description of the Mission--Radioastronomy observations will be most suitable for far-side missions where the moon acts as a shield for radio noise from the earth. This experiment consists of two series of observations which are appropriate for near-side missions and which provide data that cannot be obtained from the earth. The first of these is a nondirectional study of solar system noise sources, mainly in the decameter wavelengths blocked by earth's atmosphere. This uses small, simple antennas and radiometers for continuous scanning from 300 kHz to 20 MHz . The second experiment uses two large, in-place antennas to do directional studies on the 20 major sources of noise on the $1-M H z$ band. The two series of observations are described below.

Nondirectional Radiometery. Monitoring the intensity and changes over time of solar meter-length radiation and Jupiter decameter bursts which cannot be observed from the earth's surface are the prime goals of this experiment. Searches will also be made for sources of low-frequency emission from other solar-system objects,

AIRESEARCH MANUFACTURING DIVISION

TABLE 2-17
TWENTY-FOUR-HOUR TIMELINES FOR RESOURCES INVESTIGATION MI SSION

$\begin{gathered} \mathrm{T} \\ \mathrm{I} \\ \mathrm{M} \\ \mathrm{E} \\ \text { (hrs) } \end{gathered}$	ASTRONAUT			$\begin{gathered} T \\ I \\ \mathrm{M} \\ \mathrm{E} \\ \text { (hrs) } \end{gathered}$	REMARKS
	1	II	III		15 man hours for outside tasks
	Activity	Activity	Activity		
-1-	Eat and Hygiene	Eat and Hygiene	Eat and Hypiene	-1-	16 hours for inside scientific
	Don suit	Don suit	Don suit		
	Egress	Egress	Monitor		3 airlock cycles
-2-	Sortie	Sortie		-2-	
-3-	Basic Traverse Mission on	Basic Resources investigation		-3-	Sorties: Two different sorties each on alternate days. Even days have longer stops (15 min instead of 5 min ,) and half the range of baseline missions. Odd days are sorties with one long (1 hr) stop at a selected point of resources interest, with $10-\mathrm{ft}$. drill hole and extensive sample collection and processing
4.	LSSM	Mission with I on LSSM	Lab experiment	-4	
-5-			Petrographic Analysis and	-5-	
-6-			Mass Spectrometry	-6-	
-7-				-7	
-8-	Ingress	Ingress		-8-	
	PLSS Recharge	Doff suit			
-9-	Eat and Hygiene	Eat and Hygiene	Eat and Hygiene	-9-	
		PLSS Recharge	Egress	-10-	
-10-	Lab experiment	Lab experiment Sample checking	Local ESA Samp. collection		.
-11-	Charting and plotting site	Chromatic Gas Analysis	Drill Compaction	-11-	
-12-	locations.	and	Study	2 -	
		Analysis	Ingress	-13-	
-13-			Doff suit		
-14-	Doff suit Eat and Hygiene	Eat and Hygiene	PLSS Recharge	-14-	
-15-				-15-	
-16-				-16-	
-17-	Rest	Rest	Rest	-17-	
-18-				-18-	
-19-	-			-19-	
-20-				-20-	
-21-				-21-	
-22-				-22-	
-23-				-23-	

especially the terrestrial planets. This is a 2-week experiment, concentrating on the sun during the lunar day and on the planets after sunset, about day 9 .

Directional Radioastronomy and Radiometry. This experiment uses an interferometer, erected on the moon's surface early in the mission, at a specific wavelength of 300 m . Source flux density is measured continuously. This record reveals the spatial distribution in right ascension and intensity of the 20 sources to be studied. Data transmission and recording to the shelter is automated. This experiment also takes the full two weeks of mission time, with the major astronaut effort during the first three days.
b. Additional Requirements of the Mission--Instrumentation needed for the nondirectional radiometry experiment includes:
(1) Antennas. Two loop antennas and one whip antenina mounted on the shelter. These are deployed by an astronaut on the second day.
(2) Multichannel Stop-frequency Ryle-Vomberg Radiometer. This instrument is used for noise measurements over the frequency range 300 kHz to 20 MHz . It is a conventional Dicke-type receiver with an all-solid-state noise source. The frequency range is covered in 10 to 20 steps with a $20-\mathrm{kHz}$ bandwidth. The receiver noise figure is less than 8 db , dynamic range greater than 70 db , and a relative measurement accuracy of plus or minus 0.5 db is maintained. Items (2), (3), and (4) are mounted in the shelter.
(3) Rapid-burst Radiometer. The fast-burst radiometer used in conjunction with one of the loop antennas is designed to measure the characteristics of impulsive noise bursts such as solar type III bursts. It will consist of four fixed-frequency receivers, all of which will be open to reception at the same time until a burst is detected. The presence of a burst will be established by the detection of a signal above some preset threshold, in which case the receiver will store the detected signal and shut itself off. The telemetry system will sample the receivers serially, and each receiver will be reactivated upon reading out its measured data. Upon reactivation, the cycle will repeat. The time between readings on any one channel will be about 150 ms and will require about 20 ms to perform a reading. By locking a channel after a signal is detected and measuring its time of occurrence and amplitude, it is possible to measure the intensity, duration, and frequency drift of a burst.
(4) Phase Detector. This instrument provides a relative comparison of the phase of the signal incident on the loop antenna with respect to that received by the whip. Two phase detectors are required, one for each loop antenna. The output from each is sampled in synchronism with the step-frequency control provided in the Ryle-Vomberg radiometer.

Total equipment weight is 20 lb , volume $0.5 \mathrm{cu} \mathrm{ft;} \mathrm{total} \mathrm{energy} \mathrm{required}$ is 140 kwh .

Instrumentation required for the directional radioastronomy and radiometry experiment is:
(1) Remote Dipole Array Antenna. Twelve half-wave and one MHz dipoles and associated reflectors arranged in an east-west line to form one $1800-\mathrm{m}$-long element of an interferometer. The effective area of the element at $\mid \mathrm{MHz}$ is 250,000 square meters. The element is located 5 km from the main base.
(2) Central Diople Array Antenna. This element is located at the main base and is the same type as the remote antenna.
(3) Radiometer. This instrument is a Ryle-Vomberg radiometer capable of operating at five frequencies logarithmically spaced over the range 100 kHz to 1 MHz . The output is proportional to the signal strength incident on the antenna. This is included in the first study.
(4) PF Transmitter. This instrument is a small microwave transmitter. The $0.5-\mathrm{w}$ power output is sufficient for the purpose for which it is employed, namely to link the remotely deployed interferometer element with the element located at the main base.
(5) RF Receiver. This instrument is a microwave receiver located at the main base. Receiving signals from the nicrowave transmitter located at the remote site, it completes the necessary link tying the remote antenna element with the element located at the main base to form an interferometer.

Total equipment weight is 1000 lb for the antenna array and 5 lb for instrumentation. Total volume is 50 cu ft ; total power required is 150 kwh .
c. Timelines--General changes from basic mission times are discussed below. For the first experiment, additional crew time on ESA will be required to erect and position the three antennas on day 2. Thereafter, extra internal scientific time by one man will be needed to monitor the equipment ($1 \mathrm{hr} / \mathrm{day}$ in $10-m i n$ intervals) and to reduce and interpret the data gathered ($2 \mathrm{hr} / \mathrm{day}$ in $30-\mathrm{min}$ intervals). Total man hours, ESA and inside activity, is 38 hr . The second study involves emplacing 3600 m of dipoles in two linear arrays 5 km apart. The first element is near the shelter and is emplaced on day 3 by the third astronaut. The remote antenna, 5 km distant on a maria or other flat plain, is emplaced on one $6-h r$ sortie on day 4 . Because of the extra time involved in these two studies, three men are necessary if other scientific tasks are to be carried out. There is no requirement for more than one man on ESA at a time, however. After day 4, monitoring of the remote antenna receiver and the radiometer takes $1 \mathrm{hr} /$ day in $10-\mathrm{min}$ intervals. Reduction and analysis takes $2 \mathrm{hr} /$ day in $30-\mathrm{min}$ intervals. Total time required is 45 hr . Final analysis of data from both experiments takes place on day 13 . This will take two men working together for 4 hours or 8 man hours. The total time required

AIRESEARCH MANUFACTURING DIVISION
to set up antennas, monitor equipment, reduce data, and conduct the final analysis is 91 hours. Only one man at a time is required until day 13 , when two are necessary, both working inside the shelter.

For data on the specific timeline, see Table 2-18.

3. Forty-Inch Telescope - Basic Astronomical Observations Mission

a. Description of the Mission--The use of a $40-\mathrm{in}$. telescope in an early lunar shelter program supposes a heavy commitment to astronomy for the whole mission. An instrument of this size on the lunar surface has a greater resolving power than the $200-i n$. telescope at Mt. Palomar and can receive wavelengths in the ultraviolet which.are absorbed by earth atmosphere

It would be able to make observations impossible with the smaller instruments of the Phase I, II, and III Optical Astronomy Programs in the basic ELS mission plans. The use of a telescope this large would result in significant advances in almost every phase of optical astronomy, as well as providing data for the design of a permanent lunar observatory with 100 to 200-in. telescopes. Because of the extra weight and additional man hour requirements of the 40-in. mission, it is not recommended as a replacement for Phase I, II, and III astronomy programs. It would be a logical choice for the second or third ELS missions, when the early astronomy programs have been completed.

The 40-in. telescope is mounted on top of the shelter. It is operated from inside, and all observations and sensor changes are made from inside. Observations would be made on a continuous basis from the time the telescope is erected until the end of the mission. Provision has been made in the design of the telescope for automatic operation, after the mission is over, for a period of up to one year.

Three basic observation programs make up the manned part of the mission:
Investigation of distribution patterns and densities of interstellar gas through emission line spectrometry and investigation of rotational periods of nearby stars.

Survey, by photoelectric methods, selected stars in sky fields to test the brightness-size-distance relationship leading to a further classification of selected stars. In addition, within the capabilities of the aperture, a certain amount of surface mapping and astrometry of astronomical bodies will be commenced; in particular, investigation of high-resolution characteristics of very faint stars and galaxies, up to the limit of the tracking and recording capability of the sensors. This will be mostly in the UV portion of the spectrum, but will also include the visual and near infrared.

Mapping the areas of galactic visual noise sources can be done, guided by radio astronomy results from on earth, in orbit and eventually on the far side of the moon.

TABLE 2-18
TWENTY-FOUR-HOUR TIMELINES FOR RADIOASTRONOMY ALTERNATE MISSION

Investigation of the high-resolution characteristics of the spectra of distant stars and galaxies to reveal the red shift of very faint objects and help to determine the reason for the shift; whether through absorption, photon half-life phenomena, or a Doppler shift due to increasing velocity with increasing distance from the observer.

Several series of observations at different wavelengths using direct photography, spectroscopy, photoelectric photometry, and spectral scans will be made in each observation program. Photographs, spectrograms, and numerical data will be transferred back to earth at the end of the mission.

The 40-in. telescope has a number of other proposed observation programs. These include meteorological studies of earth; Mars, and Venus, atmosphere observations for the terrestrial planets, Jupiter and Saturn, meteorite impact counts on other planets, ocean surface height measurements, and some highresolution solar photography. A 2-week mission does, not permit all these to be done, but the surface height measurement series has been included to give an example of nonastronomical use of the telescope.

The experiment profile below is from the Kollsman Instrument Feasibility Study for the $40-i n$. telescope, with additions from the North American Scientific Mission support study for LESA.
(1) Acquire in any order and track the following or similar stars: Capella, Gamma Velorum, Zet Puppis, Antares, Aldebaran, Beta Centauri, Spica, Achernar, Rigel, Sirius, Deneb, Canopus, Procyon, Arcturus. Perform the following experiments on each of the stars:

UV photon counting (fine, medium, and coarse modes)
UV spectral photography (fast and slow film)
Visual photon counting (fine, medium, and coarse modes)
Visual spectral photography (fast and slow film)
Image photography on starfield camera or electron camera.
Additional recording on the above stars:
Mount angles at periodic intervals
Tracking error (fine guidance) signals at periodic intervals
The data reduction requirements are:
From recorded photon count plot spectral characteristics of at least two of the above stars for correlation with data obtained on earth and OAO-GEP spectroscopic experiments.

From the true astrometric data on two of the above stars, determine accurate OAP coordinates and orientation.

From determined OAP coordinates and orientation, calibrate coordinate converter. Determine accuracy of programmed tracking by monitoring open loop fine guidance error signals on two of the above stars.
(2) Acquire in any order and using the program track mode, track the following or similar extended sources: nebulae in Orion, Spica, Eta Carinae, Magellanic cloud galaxy, Milky Way galaxy, and.Milky Way dark clouds.

Perform the following experiments with the narrow ($5 \mathrm{ft} \times 2 \mathrm{~A}$) entrance slot:

```
UV photon counting (medium and selected fine modes)
UV spectral photography (fast film)
Visual photon counting (medium and selected fine modes)
Visual spectral photography (fast film)
```

(3) Acquire in any order and track at least three short-term bright spectroscopic variable stars (such as Alpha Pavonis and at least six bright radio astronomy sources (quasars).

Perform the following experiments on each of the stars in the existing OAP spectral configuration:

Photon counting (fine mode)
Spectral photography (fast film)
Repeat the above experiments for each variable star at specified time intervals for the duration of the manned experiment phase.
(4) Acquire in any order and using the program track mode, track stars in galactic clusters, such as Pleiades, 47 Tulanae, Omega Centauri, Perseus (2).

Perform the following experiments:
UV photon counting (coarse mode)
Visual photon counting (coarse mode)
Electron camera photography (six photographs)
UV photography of central core of these clusters

The data reduction requirements are:
From photon count and magnitude, plot and determine peak photon count verșus magnitude. Extrapolate to system limit.

Correlated data with calibration stars for fine and medium photon count modes. Check correlation by obtaining photon count peak for two additional magnitudes.
(5) Acquire in any order and using the time program track mode (equatorial conversion to alt-azimuth) track the planets: Mars, Mercury, Venus, earth, Saturn and Jupiter and zodiacal light.

Perform the following experiments:
Wide band image photography using starfield camera.
Narrow band (100 A) image photography (4 filters) using starfield camera.

Polarimetry (4 narrow bands, voice recorded) percent and relative direction using relay optic.

Total field image magnitude using photometric adjunct to the starfield camera.

Additional recording:
Visual spectral photography.
(6) Manually scan and view through relay optics. Photograph with or without UV sensitive photocathode, on an electrostatic image intensifier, various portions of the Milky Way galaxy, Mayall's object and other objects of interest.

Photograph images of interest on starfield camera.
Record astronaut impression data on voice recorder for correlation with film data.
(7) From various recorded data determine tracking precision versus star magnitude. Extrapolate data to the star limit. Acquire and track a star. 5 M less than star 1 imit and determine tracking precision. Record a starfield image using the electron camera at the longest feasible exposure.
(8) Perform high-resolution photographic studies at a variety of specific wavelengths on the stellar objects tracked in No. 1, 2, 4, and 5.
(9) Using a laser rangefinder, find and track targets on earth oceans for 2-hr periods, with continuous range recording. Also track landbased calibration sites and record range.
b. Extra Requirements of the Mission--Instrumentation requirements for this mission are discussed below. The $40-\mathrm{in}$. telescope, mount, additional optics and support instrumentation come installed on the shelter. The telescope is a diffraction-limited, 38-in.-aperature, modified Ritchey Chretien type with l90-in. focal length. It has a spectral range of from 900 A in the ultraviolet region to $10,000 \mathrm{~A}$ in the infrared. Support instrumentation includes photometers, both photographic and photoelectric; low- and high-resolution spectrographs; spectral scanners; film holders; laser range-finder; a film-processing package; and electronic and television starfield cameras. Total weight of this package is 2370 lb .

The telescope tube is mounted on top of the shelter. One leg of its supporting yoke serves as an optical relay to bring all the focal points inside the shelter. All sensing and data interpreting equipment can be attached to the optical system from inside, so normal operation of the telescope is entirely in shirtsleeve condition.

Because of the $2300-1 \mathrm{l}$ weight of the package, there is little allowance for other equipment to be landed with the shelter. The ESS, LSSM, LFV, 10and loo-ft drills, and internal geological analysis equipment would have to be delivered separately, used from previous missions, or deleted from the mission profile. Since this equipment is necessary for almost all the tasks outlined in the basic mission plan, deleting it would make the 40-in. telescope mission primarily astronomical. Some sample collection, photography, and mapping could be done on local ESA.

Crew requirements for the mission are as described below. The mission outlined by Kollsman and by North American uses only two crew members. Both of these are occupied full-time on astronomical experiments. If it proves feasible to man an exclusively astronomical mission to the lunar surface, then a 2-man crew is feasible. If utilization of previous equipment or the landing of another vehicle with extra equipment is allowable, then three men should be considered a minimum. For the 2 -man crew the commander is an astronaut trained as an astronomer, while the other man is a professional astronomer with astronaut training. These two are supplemented by another astronaut trained in geology for the 3-man crew.
c. Timelines-General changes from basic mission timelines are described below. The 2 -man timeline for this mission is completely changed from the basic mission. Of the 332 hr available to each man during the mission, 112 hr or one-third of each day are devoted to astronomical experiments on the 40-in. instrument. The three-man configuration allows the third man to perform basic mission ESA, although the number of sorties will be reduced from 13 to 11. This is because the first two days of the mission will be devoted to erecting the telescope, which arrives on the side of the shelter. This requires two men working two 3 -hr sorties each.

For data on specific timelines see Table 2-19.
aIresearch manufacturing division

TABLE 2-19
THREE-MAN TIMELINES FOR 40-IN. TELESCOPE ALTERNATE MISSION

SECTION 3

CONCLUSIONS

The principal results of this analysis are as summarized below.

- Flexible 24-hr crew task timelines are more realistic than detailed crew task allocations.
- On the basis of published equipment operating times, available time on the LSSM sorties, and data from the extravehicular tasks in the Lunex II study, workloads on the l-man LSSM sorties may be too high to allow effective completion of the scientific tasks allotted to these sorties.
- The addition of a third crew member frees more man hours for lunar surface and shelter scientific activities while reducing the effective workload per man.
- The primary advantages of a 3-man over a 2-man crew are:

Increased crew safety, especially on LSSM sorties
Decreased workload per man per day
Enhanced scientific mission success, since the probability of completing all scientific objectives within the allocated time periods is increased. This is also furthered by the greater range of scientific skills provided by three men.

- The primary disadvantages of a 3-man as opposed to a 2-man crew are:

Extra life support equipment, requiring additional PLSS's and larger shelter environmental control and power systems.

Increased weight due to the additional crew member, his support equipment, and the food, water and oxygen he requires.

Increased shelter volume. An additional hard suit and an additional bunk may be required.

Increased carrying capacity of the LSSM with its corresponding increase in weight, volume, and power requirements.

Further study is recommended in the following areas:
Visual capabilities of man during simulated lunar night.
Simulations requiring the use of geophysical and astronomical equipment in a simulated lunar environment. Experimental timelines and workloads would be determined for each man/equipment interface.

AIRESEARCH MANUFACTURING DIVISION

Three-man shelter simulations to evaluate the effect of the third man on emergency rescue, crew workloads and environmental support requirements.

One- vs two-man donning of state-of-the-art PLSS's. This should include PLSS exchange on simulated 6-hr LSSM sorties.

The capabilities of l- vs 2-man operations of a simulated LSSM to determine the shortest effective stop time, optimal utilization of equipment, and metabolic workloads.

REFERENCES

1. The Bendix Corporation, $B S R-l 153$, Scientific Mission Support Study Apollo Extension Systëm, July, 1965.
2. Garrett AiResearch Manufacturing" Division, 66-0530, "Preliminary Two-ManMission Timeline and Support Requirements." Early Lunar Shelter Design and Comparison Study, May 5, 1966.
3. Garrett AiResearch Manufacturing Division, 60-0397, "Statement of Work for Honeywell Incorporated," Early Lunar Shelter Design and Comparison Study, April 21, 1966.
4. NASA, Design Criteria and Reference Data for Lunar Surface Operations, Vol. I: "General Criteria."
5. NASA, Design Criteria and Reference Data for Lunar Surface Operations, Vol. II: "LEM/Truck Shelter Payloads."
6. Westinghouse Defense and Space Center, Emplaced Scientific Station, Phase II, Preliminary Design, April 2966.
7. Honeywell, Inc., Design Criteria for Extraterrestrial Surface Roving Vehicles, Phase IB - The LUNEX II Simulation, to be published.
8. North American Aviation, Systems and Information Division, SID 66-365, Scientific Mission Support Study for Extended Lunar Exploration, April 1966.
9. North American Aviation, Systems and Information Division, NASA CR 63269, SID 6S-289-4, Study of Scientific Mission Support, Lunar Exploration System for Apollo, Vols. II, III, IV.
10. Kollsman Instrument Corp., Space Division - Summary and Final Report, NAS-8-20132, Optical Astronomy Package Feasibility Study for Apollo Applications Program for NASA, Marshall Space Center, March 1966.
11. Proceedings of the Conference on Lunar Exploration and Science, Falmouth, Mass., August 1965.
12. Proceedings of the 1965 Woods Hole Conference on Lunar Science, Woods Hole, Mass., July 1965.
13. NASA, Office of Manned Space Flight, Status Summary, Manned Experiment System for Apollo Extension System, Washington, D. C., August 2, 1965.
aIRESEARCH MANUFACTURING DIVISION
14. G. Henderson and H. Mitchum, Systems and Research Requirements for a Lunar Surface Laboratory, Proceedings of the XVI International Astronomical Congress, Athens, September 1965.
15. Bell Aerospace Corporation, Report No. D7183-920001, Study of Manned Locomotion and Protection Systems for Moon, Mars, and Venus.
16. Honeywell Inc., I2504-ITRI, Man-System Criteria for Extraterrestrial Roving Vehicles, Phase la, January 6, 1966.
17. Boeing Co., D2-83103-1, MOLAB Operational Plan - ALSS Payloads, June 1965.
18. Bendix Corp., MOLAB 14 Day Mission, Vol. II, book 10, June 1965.

R-2

APPENDIX
GUIDELINES AND ASSUMPTIONS FOR EARLY LUNAR SURFACE MISSIÓNS

CREW ACTIVITY GUIDELINES

Surface Excursions

For crew safety reasons at least one astronaut will remain in the shelter. This astronaut may divide his time between monitoring or assisting the surface astronauts and scientific tasks. The astronaut remaining inside the shelter will wear the soft suit in the vented condition. The astronaut performing the ESA will wear a hard suit. For a 3-man crew with two crew members remaining in the shelter, one of the two should wear a hard suit to increase safety and reliability if an emergency rescue of the outside crew member is necessary. If two crew members are on the lunar surface, hard suits will be worn by each.

A surface operator, or astronaut outside the LEM/T Shelter, may spend a maximum of 6 hr on the surface (if two backpacks are used) in any one excursion. No more than 6 hr per day on the lunar surface stiould be permitted for any one astronaut. Two successive days of 6-hr excursions for a single astronaut should be avoided if possible. Rest periods appropriate to the Apollo hard suit limitations and normal endurance limits of a 75 percentile astronaut should be included when performance time is calculated for extended walks on the surface.*

Major Surface Operation Constraints

The maximum distances that an astronaut can walk under normal and emergency conditions are:

- Normal

Distance	1.5 statutory miles (sm.)	$(2.4 \mathrm{~km})$
Average Rate	0.5 mph	$(0.8 \mathrm{~km} / \mathrm{hr})$
Duration	3 hr	$(3 \mathrm{hr})$

- Emergency

Distance	2.0 sm	$(3.2 \mathrm{~km})$
Average Rate	0.5 mph	$(0.8 \mathrm{~km} / \mathrm{hr})$
Duration	4 hr	$(4 \mathrm{hr})$

Slopes, hills, and rough country will reduce the surface operator's walking capability.

[^1]The portable life support system (PLSS) has been developed to provide a $3-h r$ operating period of 1600 Btu per hr plus a l-hr emergency oparating period. The maximum operating time for the PLSS is 4 hours including the emergency operation time. Peak loads of 2000 Btu per hr can be sustained by the PLSS for short durations of the order of 5 minutes. A recent simulation has indicated that it is desirable to have a PLSS capable of supporting higher peak loads (Reference 7) since sustained walking rates considerably higher than 0.5 mph (e.g., 2.6 mph) can result in oxygen consumption rates in excess of the assumed PLSS system capabilities.

Operation of equipment on the lunar surface should be conducted, whenever possible, in the standing position. Work while kneeling should be kept to a minimum.

Location of LEM/T Shelter

The shelter will be located approximately 0.5 km from the LEM/TAXI. The mode of astronaut transfer will be walking from the LEM/TAXI to the shelter at mission start, and by riding the LSSM from the shelter to the LEM/TAXI at mission end. For a 3-man crew, this requires either increased LSSM carrying capacity, two LSSM trips, or walk back by one crew member.

Training

All crew members should be trained in the deployment and use of all equipment critical to mission success and crew survival. This does not include scientific equipment where crew specialization may be expected.

Egress/Ingress

Although the acts of ingress and egress require relatively little time, the preparations for egress and the normal recharge and storage routine following ingress require considerable time. Taking these factors into account approximately 60 min should be allowed for each ingress and each egress. (A more detailed discussion of ingress/egress time requirements is given in Section 5.0, Volume I of the NASA guideline documents.)

Sleeping

When sleeping periods are staggered, provisions should be made to keep disturbances at a minimum while crewmen are asleep.

First Sortie

The first LSSM and/or LFV sortie should be limited to 3 hr or less in the visual vicinity of the shelter to permit engineering checkout and familiarization.
alresearch maniufacturing division

$$
A-2
$$

ESS Deployment

The Emplaced Scientific Station (ESS), if required by the mission, will be deployed early in the mission in case an abort occurs.

Contingency Time

Sufficient contingency time should be included throughout the mission to allow for unexpected events or task difficulties.

Mission Duration

The minimum lunar stay time shall be 14 days, unless an abort is necessary.

Monitoring

Monitoring facilities should be designed so that visual monitoring of surface activities can take place by one crewman when the other is operating in the vicinity of the shelter. The viewing facilities should also allow remote control and observation of a surface vehicle operating in the vicinity of the shelter.

LOCAL SCIENTIFIC SURVEY MODULE (LSSM) CHARACTERISTICS
A preliminary description of the LSSM parameters follows:
Capable of being operated by a single astronaut (no cabin and of transporting a cargo up to 600 lb of scientific equipment. A second astronaut is able to ride in the cargo space if required.

Speed of at least $5 \mathrm{~km} / \mathrm{hr}$ in soft soils and $8 \mathrm{~km} / \mathrm{hr}$ on level, compacted soild.

Capable of operating within a circular area of at least $8-\mathrm{km}$ radius from the LEM/Shelter. Range per sortie is 30 km based on an average speed of $5 \mathrm{~km} / \mathrm{hr}$ and 6 hours of continuous travel.

Capable of operating at any time during the lunar cycle.
Capable of being replenished for additional sorties after its return to the LEM/Shelter. The vehicle will be capable of at least one $6-h r$ sortie per 24 hr throughout the 14 -day mission without undue penalties to the overall system.

A central onboard electrical power source for all vehicle loads. Average power available will be approximately l kw for the 6-hr sorties.

A vehicle navigation system with the capability of indicating headings, distance traversed, local, vertical, and angles.

Mobility over as wide a range of lunar surface conditions as possible.

In the remote (unmanned) mode, capable of transporting 900 lb of scientific payload.

LUNAR FLYING VEHICLE (LFV) CHARACTERISTICS

The primary mission of the LFV is to return to the LEM from a disabled surface vehicle. A secondary mission is to supplement the surface vehicle by permitting access to areas not obtainable by surface means. The following summarizes the characteristics of such a vehicle:

An open-cockpit, manually controlled vehicle which can carry two pressure-suited astronauts.

Capable of transporting two astronauts with their PLSS or one astronaut and 300 lb of scientific equipment at least 15 mi
(24 km) radial distance and return without refueling.
Approximately 22 min required for LFV preflight preparations.
The Apollo EVA backpack communications set is used. This equipment operates in the VHF band and operations are restricted to line-of-sight except at very short ranges. For exploration mission operations, additional equipment comprises part of the scientific payload on the LFV, and it includes an S-band transmitter which communicates directly with the Apollo deep space stations.

The communication system includes its own self-contained power source, and power required by the scientific payload is supplied by a source included as part of the payload.

TIME MANAGEMENT

Sleep Schedules

A minimum time period of 7.5 hr average per 24 hr should be allowed for sleep. Any lesser amount can result in a decrement in personnel. The recommended minimum unit of sleep is 3.5 hr . On the final day of the lunar surface mission, the day of lift-off, a greater rather than lesser amount of sleep should be allowed for insofar as this is possible.

In determining the particular time during which sleep periods are scheduled, serious considerations should be given to diurnal cycles and the possible detrimental effects on human performance of modifying the $24-\mathrm{hr}$ period to which the crewman is normally adapted.

AIRESEARCH MANUFACTURING DIVISION

Eating and Personal Time

Some functions (monitoring activities, briefings, verbal reports) may be performed simultaneously with personal activities, but in any case allowances should be made and times specified for such activities. Approximately 29 percent of a 24-hr day may be required for eating, personal time, hygiene and housekeeping (Reference 7).

BOOK 3

HASSLE ANALYSIS OF PROPOSED SCHEDULE

CONTENTS

Section Page
1 INTRODUCTION AND SUMMARY 1-1
2 HASSLE PROGRAM EVALUATION OF LSSM/ELS.SCIENTIFIC MISSIONS $2-1$
General 2-1
Input Schedule Evaluated 2-2
Interrupts 2-2
Parametric Variations 2-15
3RESULTS3-1
General 3-1
Case 1 - Perfect "Nominal Design" Mission 3-1
Conditions 3-1
Discussion 3-1
Conclusion 3-2
Case 2 - Effect of a Minimum Schedule Interrupt on 3-7
"Nominal Design" Mission
Conditions 3-7
Discussion 3-7
Summary 3-14
Case 3 - Variations in LSSM Speed 3-14
Conditions 3-14
Discussion 3-14
Conclusion 3-22
Case 4 - Effect of Variations in Astronaut Speed 3-22
Conditions 3-22
Discussion 3-22
Conclusion 3-26

CONTENTS (Continued)
Section Page
Case 5 - Effect of 7 Vehicle-Astronaut Conditions 3-26
Conditions 3-26
Discussion 3-26
Conclusions 3-29
Case 6 - Effect of Increased Schedule Interrupt 3-62
General Conditions 3-62
Specific Conditions (Case 6A) 3-62
Discussion (Case 6A) 3-62
Conclusion (Case 6A) 3-62
Specific Conditions (Case 6B) 3-62
Discussion (Case 6B) 3-62
Conclusion (Case 6B) 3-68
Specific Conditions (Case 6C) 3-68
Discussion (Case 6C) 3-68
Conclusion (Case 6C) 3-68
4 SUGGESTED HASSLE IMPROVEMENTS 4-1
General 4-1
Level of Success 4-1
Task Success 4-1
Mission Success 4-1
Detailed Task Simulation 4-1
Output Plots vs Mission Time 4-2
Safety Level/Interrupt Probability 4-2
Improved Input Schedule Priorities and Flexibility 4-2
Quality of Input Data 4-2
REFERENCES R-I

ILLUSTRATIONS

Figure		Page
3-1	Case 1 - Perfect. Nominal Design Mission. Average Time vs Category.	3-3
3-2	Case 1 - Perfect Nominal Mission. Time Ignored vs Category	3-4
3-3	Case 1 - Average Time vs Safety Level Perfect Nominal Mission	3-5
3-4	Case 1 - Peak Astronaut. Stress vs Day. Perfect Nominal Mission	3-6
3-5	HASSLE Interrupt Logic	3-8
3-6	Case 2 - Average Time vs Category Pi Interrupts on Nominal Mission	3-15
3-7	Case 2 - Time Ignored vs Category. P/ Interrupts on Nominal Schedule	3-16
3-8	Case 2 - Average Time vs Safety Level. Pi Interrupts on Nominal Mission	$3-17$
3-9	Case 2 - Peak Stress vs Day. Pi Interrupts on Nominal Mission	3-18
3-10	Case 3 - Variation in LSSM Speed Percent Scientific Tasks Completed vs LSSM Speed	3-19
$3-11$	Case 3 - Variations in LSSM Speeds Travel Time vs LSSM Speed	3-20
3-12	Case 3 - Variations in LSSM Speeds Average Safety vs LSSM Speed	3-21
3-13	Case 4 - Variations in Astronaut Speed Percent Scientific Tasks Completed vs Astronaut Speed	3-23
3-14	Case 4 - Variation in Astronaut Speed Average Safety Level vs Astronaut Speed	3-24
3-15	Case 4 - Variation in Astronaut Speed Total Mission. Mission Sleep vs Astronaut Speed	3-25
3-16	Case 5 - Seven Vehicle Astronaut Speed Conditions of Study	3-27

Figure		Page
3-17	Case 5 - Scientific Task Accomplishment vs Conditions with 1/2-hr Average Interrups of $\mathrm{P}(0.08,0.02,0.02$, 0.5)	3-28
3-18	Case 5 - Category 8 Accomplishment vs Conditions with 1/2-hr Average Interrupts of $P(0.08,0.02,0.50)$	3-30
3-19	Case 5 - Travel Time vs Conditions with $1 / 2-h r$ Average Interrupts of $P(0.08,0.02,0.02,0.5)$	3-31
3-20	Case 5 - Three Safety Levels vs Conditions with I/2-hr Average Interrupts of $P(0.08,0.02,0.02,5.0)$	3-32
3-21	Case 5 - Schedule Slack vs Condition with $1 / 2-h r$ Average Interrupts of P ($0.08,0.02,0.02,0.5$)	3-33
3-22	Case 5 - Seven Conditions Average Time vs Category. Condition \mid	3-34
3-23	Case 5 - Seven Conditions Average Time vs Category. Condition 2	3-35
3-24	Case 5 - Seven Conditions Average Time vs Category. Condition 3	3-36
3-25	Case 5 - Seven Conditions Average Time vs Category. Condition 4	3-37
3-26	Case 5 - Seven Conditions Average Time vs Category. Condition 5	3-38
3-27	Case 5 - Seven Conditions Average Time vs Category. Condition 6	3-39
3-28	Case 5 - Seven Conditions Average Time vs Category. Condition 7	3-40
3-29	Case 5 - Seven Conditions Time Ignored vs Category. Condition 1	$3-41$
3-30	Case 5 - Seven Conditions Time Ignored vs Category. Condition 2	3-42
3-31	Case 5 - Seven Conditions Time Ignored vs Category. Condition 3	3-43

ILLUSTRATIONS (Continued)

Figure		Page
3-32	Case 5 - Seven Conditions Time Ignored vs Category. Condition 4	$3-44$
3-33	Case 5 - Seven Conditions Time Ignored vs Category. Condition 5	3-45
3-34	Case 5 - Seven Conditions Time Ignored vs Category. Condition 6	3-46
3-35	Case 5 - Seven Conditions Time Ignored vs Category. Condition 7	3-47
3-36	Case 5 - Seven Conditions Peak Stress vs Day Condition 1	3-48
3-37	Case 5 - Seven Conditions Peak Stress vs Day Condition 2	3-49
3-38	Case 5 - Seven Conditions Peak Stress vs Day Condition 3	3-50
3-39	Case 5 - Seven Conditions Peak Stress vs Day Condition 4	3-51
3-40	Case 5 - Seven Conditions Peak Stress vs Day Condition 5	3-52
3-41	Case 5 - Seven Conditions Peak Stress vs Day Condition 6	3-53
3-42	Case 5 - Seven Conditions Peak Stress vs Day Condition 7	3-54
3-43	Case 5 - Seven Conditions Average Time vs Safety Level - Condition 1	3-55
3-44	Case 5 - Seven Conditions Average Time vs Safety Level - Condition 2	3-56
3-45	Case 5 - Seven Conditions Average Time vs Safety Level - Condition 3	3-57
3-46	Case 5 - Seven Conditions Average Time vs Safety Level - Condition 4	3-58
3-47	Case 5 - Seven Conditions Average Time vs Safety Level - Condition 5	3-59

ILLUSTRATIONS (Continued)

Figure		Page
3-48	Case 5 - Seven Conditions Average Time vs Safety Level - Condition 6	3-60
3-49	Case 5 - Seven Conditions Average Time vs Safety Level - Condition 7	3-61
3-50	Case 6A - Effect of Increased Interrupt on Nominal Mission Omitted	3-64
3-51	Case 6B - Percent Scientific Tasks vs LSSM Speed (Interruptions $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$)	3-65
3-52	Case 6B - Hours Task 8 Omitted for Three Interrupt Times vs LSSM Speed	3-66
3-53	Case 6B - Travel Time vs LSSM Speed for Three Interrupts	3-67
3-54	Case 6C - Scientific Task Accomplishment vs Total Interrupt for Three Astronaut Speeds	3-69
3-55	Case 6C - Hours in Most Dangerous Safety Level vs Interrupts for Three Astronaut Speeds	3-70

TABLES

Table Page
2-1 Summary of Local Surface Sorties (Local ESA's) 2-3
2-2 Three-Man, 24-hr Timelines for LSSM Sortie Days, 2-4 Alphonsus or Hyginus Rille Missions (Concept B, two men on surface)
2-3 Three-Man; 24-hr Timelines for Local ESA Sortie 2-5 Days, Alphonsus or Hyginus Rille Missions (Concept B, two men on surface)
2-4 Base Schedule 2-6
3-1 Case 2 - Schedule Output 3-9
3-2 Summary: Nominal Vehicle and Astronaut, P_{1}, P_{2}, P_{3} 3-63

SECTION 1

INTRODUCTION AND SUMMARY

INTRODUCTION

One plan for lunar exploration proposes the initial delivery of an unmanned Early Lunar Shelter (ELS) with Drill and Local Scientific Survey Module (LSSM) and a later landing by two men to operate the equipment. A recent estimate of the hardware cost of the initial two-flight operation indicates an expenditure of $\$ 570 \mathrm{million}$ dollars (Reference 1). Subsequent landing site explorations using the same concept are estimated to cost $\$ 520 \mathrm{million}$ dollars. The potential contribution of this expenditure of resources is related to total lunar exploration program plan. The national objective of landing a man on the moon and returning him to earth with lunar material will have already been accomplished along with the emplacement of a $200-1 \mathrm{l}$ lunar surface experiments package (ALSEP). It is likely that several lunar landings at varied locations will have been accomplished along with extensive lunar orbit surveys by manned and unmanned systems. The objectives of the ELS/LSSM lunar exploration are, therefore, the accomplishment of scientific results which are beyond the need to duplicate these achievements.

The achievement of scientific objectives for each mission is the primary result which must be planned and used to evaluate the various proposed systems of lunar exploration. This report is aimed at exploring one method of planning in the context of an ELS/LSSM mission.

SUMMARY
The preferred ELS/LSSM schedule reported in AiResearch report number 67-1964-6, Book 2, has been analyzed with the HASSLE (Honeywell's Automated Schedule Simulator and Load Evaluator) computer program. Parametric variations in astronaut speed or capability, LSSM speed, and schedule interrupts have been employed. The results of this.analysis are summarized as follows:
I. The proposed schedule is feasible under perfect (no interrupt) nominal conditions. A 4% variation in scientific achievement is predicted due to human variability alone.
2. The proposed exploration system schedule performance is very sensitive to reductions in vehicle or astronaut capabilities as well as to minor interrupts due to contingencies.
3. The proposed schedule is most sensitive to astronaut capabilities. Since information exists which indicates the astronauts may perform well in the 1/6-g environment, this may require major revisions in the planned schedule to make better use of astronaut capability.

AIRESEARCH MANUFACTURING DIVISION
4. Schedule interrupts and reduced outside capability tend to create spare time in the ELS. Some consideration should be given to providing for use of this time as well as to the added operational hours which may be required of the ELS.
5. Increasing the speed capability of the LSSM beyond the design point is not an effective way of improving the output of the proposed schedule when faced with interrupt problems.
6. No major astronaut stress or safety problems appear to limit the proposed schedule or endanger the astronauts.
7. The HASSLE program provides an effective tool for studying the schedule-vehicle-man interaction. It should be further developed as suggested in Section 4 and further applied to lunar exploration schemes.

SECTION 2

HASSLE PROGRAM EVALUATION OF LSSM/ELS SCIENTIFIC MISSION

GENERAL
This study makes use of the digital computer program HASSLE (Honeywell's Automated Schedule Simulator and Load Evaluator) to evaluate the schedule reported in AiResearch Report 67-1964-6, Book 2, "Early Lunar Shelter Design and Comparison Study, Review of Scientific Mission Requirements". The nature of the HASSLE program is discussed in Reference 2. Generally HASSLE is a Fortran language mathematical model used to simulate complete missions of operators performing scheduled and unscheduled activities over long periods of time. Crew characteristics and expected variance are dynamically simulated and continually modified to reflect the setting for each task. A Monte Carlo technique is used to simulate schedule uncertainties and variance in stochastic variables. The schedule evaluation made in this analysis include both the expected mean values and their variance due to the stochastic nature of a manned operation. The behavior of the crew is predicted from the best models available from experimental data and theoretical considerations. The system simulation is subjected to a "driving function" or disturbance in the form of time delays or schedule disturbances representative of realistic operations.

In this study the speed of the crew's performance and the vehicle mode of travel are treated as parametric variables which correspond to variations in equipment and/or speed permitted by such variables as lighting conditions. A previous application of HASSLE evaluated 2-man crews, so it was necessary to modify the program to allow evaluation of the recommended schedule. The approach taken consisted of defining joint tasks for the crew members on the lunar surface during the scientific task times.

The principal product of the ELS/LSSM mission is the scientific accomplishment of the astronauts. Since no measure of discovery or "science" achievement can be defined "a priori", it is assumed that the useful application of astronaut time is a criterion related to the ultimate objectives. Available astronaut scientific "time" for essential tasks and observation is, therefore, considered the primary product to evaluate schedules and system capabilities.

In order to measure schedule achievement and capability better, a HASSLE program modification was introduced into the input schedule. An unspecified "science" activity was introduced into every LSSM and ESA activity. This activity fits into the exploration schedule as a "nonpriority zero \% essential" task which requires more time than would be normally available in the schedule. It serves the function of providing a scientific task which will be done on the lunar surface whenever time is available. Since the science activity is "zero \%" essential, the computer program will work at this task only until the astronaut must ingress to the ELS due to a PLSS supply problem. Being nonpriority, the primary mission elements will always take precedence over this science task. This program improvement, therefore, allows the astronaut simulation to take advantage of his valuable exploration opportunities to the maximum. The measure is also most sensitive to schedule variations since it will be affected by all performance variations which affect the schedule.

AIRESEARCH MANUFACTURING DIVISION
Los Angeles, California

Book 3

INPUT SCHEDULE EVALUATED

The HASSLE schedule analysis reported herein is based upon the recommended 14-day missions which involved 11 local ESA's, as shown in Table 2-1, and eight LSSM sorties for the Alphonsus and Hyginus Rille missions. Concept "B," or the two men on the surface, is employed in this analysis since it is the preferred and best specified schedule available. Tables $2-2$ and $2-3$ are the typical time lines for LSSM and Local ESA Sortie days. The details of the LSSM sorties are to be found in Tables 2-12 through 2-15 of 'AiResearch Report 67-1964-6, Book 2.

Table 2-4 is the input schedule into the analysis. This base schedule is a sequential statement of 11 ESA's and 8 LSSM sorties involving a 3-man crew in Concept B. The input schedule includes:
o A time sequence of activities constituting the planned schedule

- A priority task list of tasks which will be rescheduled if not completed or attempted for various reasons
- The average time, expected deviation, task type, safety level, travel required, and percent essential of each task
o Description of:
crew members speed and initial proficiency
vehicle travel rates
interrupt distribution and probabilities
relative importance of tasks
Table 2-4 can be understood by noting its relationship to the basic information found in AiResearch Report 67-1964-6, Book 2. The design point vehicle speeds and distances are of special interest.

INTERRUPTS

Several types of unscheduled "interrupts" can occur in HASSLE during the planned task execution sequence. The interrupts may represent repair time (both scheduled and emergency) due to equipment failure, time lost due to equipment malfunction, or any other event which might cause a delay in the desired schedule.

The interrupts are divided into four categories and are generated from exponential distributions based on an average time input for each category. The four types are:

1. Inside - time delay
2. Outside - time delay

AIRESEARCH MANUFACTURING DIVISION

TABLE 2-1
SUMMARY OF LOCAL SURFACE SORTIES (LOCAL ESA's)

No.	Description	Number of Crew	Total Time, hr :min	Muscle Group Involved	Rangé, km	Missions Used on
1	Unload and set up LSSM; check external gear; lay out erosion samples	2	2:00	$\begin{array}{r} \text { VL }(0: 20) \\ \text { L }(1: 00) \\ S(0: 40) \end{array}$	0.5	All
2	Begin 30-m hole drilling	1	2:00	$\begin{array}{r} \text { VL }(0: 40) \\ \mathrm{L}(1: 00) \\ \mathrm{S}(0: 20) \end{array}$	0.0	Alphonsus, Hyginus Rille
3	Complete $30-\mathrm{m}$ hole	1	2:00	$\begin{array}{r} \text { VL }(0: 10) \\ L(1: 00) \\ S(0: 50) \end{array}$	0.0	Alphonsus, Hyginus Rille
4	ESS activation	1	3:00	$\begin{gathered} \text { VL }(0: 00) \\ \text { L }(1 ; 00 \\ S(2: 00 \end{gathered}$	2.5	All but LSSM/LFV mission
5	Lay out geophone net; set off one charge	1	3:00	$\begin{array}{r} \text { VL }(0: 00) \\ \mathrm{L}(1: 00) \\ \mathrm{S}(2: 00) \end{array}$	4.0	All
6	Nuclear and electrical logging of $30-\mathrm{m}$ hole	1	2:00	$\begin{array}{r} \text { VL }(0 ; 00) \\ \mathrm{L}(1 ; 30) \\ \mathrm{S}(0 ; 30) \end{array}$	0.0	Alphonsus, Hyginus Rille
7	Sonic velocity measurements on $30-\mathrm{m}$ hole	1	2:00	$\begin{array}{r} \text { VL }(0: 10) \\ \mathrm{L}(1: 20) \\ \mathrm{S}(0: 30) \end{array}$	0.0	Alphonsus, Hyginus Rille
8	Seismic charge emplace and ESS checkout	1	2:00	$\begin{gathered} \text { VL }(0: 10) \\ \mathrm{L}(0: 40) \\ \mathrm{S}(1: 10) \end{gathered}$	4.0	All
9	Phase I astronomy experiments setup	1	2:30	$\begin{array}{r} \mathrm{VL}(0 ; 30) \\ \mathrm{L}(0 ; 30) \\ \mathrm{S}(1 ; 30) \end{array}$	1.0	All
10	Optical and x-ray astronomy experiments and observations	2	3:00	$\begin{array}{r} \text { VL }(0: 00) \\ \mathrm{L}(0: 30) \\ \mathrm{S}(2: 30) \end{array}$	1.0	All
11	Radio astronomy observations	2	3:00	$\begin{aligned} & \text { VL }(0 ; 00) \\ & \mathrm{L}(0 ; 30) \\ & \mathrm{S}(2 ; 30) \end{aligned}$	1.0	All

TABLE 2-2
THREE-MAN, 24-HR TIMELINESS FOR LSSM SORTIE DAYS, ALPHONSUS OR HYGINUS RILLE MISSIONS (CONCEPT B, TWO MEN ON SURFACE)

Elapsed Time	Time per Task	Astronaut			Remarks
		I	II	III	
0600	20	Take down beds	Take down beds	Take down beds	No. III agsists 1 and II
	45	Eat meall and clean up	Eat meal I and clean up	Eat meal I and clean up	
0700	20	Hygiene	Hygiene	Hygiene	
0800	55	Suit don, PLSS c/o	Suit don, PLSS c/o	Don vented suit - ald in PLSS c/o	
0900	10	Egress to surface	Egress to surface	Monitor airlock	
	6:30	LSSM sortie	$\begin{aligned} & \text { LSSM } \\ & \text { sortie } \end{aligned}$	Monitor sortie. inside geological	
1100					
1200				Eat snack	Some method of feeding Astronauts I and II must be found while they are on the 6-hour sortie, otherwise 9 hours elapse between meals.
1300				Earth communications	
1400					
1500	55	Suit doff Recharge PLSS	Suit doff Recharge PLSS	Suit doff	Scientific tasks are best scheduled on an "As-Time-Avallable" basis, rather than specific times for specific tasks; tasks not critical to mission success which cannot be completed on the day asaigned to them should be dropped from the schedule.
1600	45	Eat meal II and clean up	Eat meal II and clean up	Eat meal II and clean up	
1700	$\begin{gathered} \mathrm{I} \\ \mathrm{hr} \end{gathered}$	Rest	Rest	Rest	
1800	30	Scientific tasks inside	Scientific tasks inside	Scientific tasks inside	
	20	Suit c/o.			
1900	1	Maintenance, repair, and housekeeping			
	hr		Suit c/o		
2000	45	Report writing, hygiene, and personal activity			
				Sult c/o	
2100	45	Eat meal III and clean up	Eat meal III and clean up	Eat meal III and clean up	
	30	Buifer period	Buffer period	Buffer period	
2200	10	Set up beds	Set up beds	Set up beds	
	$\stackrel{8}{\mathrm{hrs}}$	Rest	Rest	Rest	

THREE-MAN, 24-HR TI-MELINESS-FOR-LOGAL-ESA-SORTIE-DAYS ALPHONSUS OR HYGINUS RILLE MISSIONS (CONCEPT B, TWO MEN ON SURFACE)

TABLE 2-4

TABLE 2-4 (Continued)

TABLE 2－4（Continued）

CARD	N（）．	0120
capn	49.	0121
CaOn	N7．	0122
CART	＋	0123
Cant	NT．	0124
cast	N\％．	0125
CARD	NO．	0126
CAP品	－ 3.	0127
PAP？	vj。	0129
CADE	N．	0129
CAat	wう。	0130
CADの	N3．	0131
CAOT	リア．	3132
carn	\cdots－	0133
CAOT	No．	0：34
CAPD	No．	0135
cas？	40.	0136
Cas？	N\％．	0137
CAQ）	N\％．	0138
Caq？	N3．	0139
CAO：	4\％	2140
CAOT	N）	0141
CARn	No．	0142
caon	Nก．	0143
cann	$N 3$.	0144
CAP号	いク。	0145
CART	No．	0146
CAP！	No．	0147
cas！	N0．	0148
CAR＂	N0．	0149
CAR？	nn．	0150
CAPD	vo．	0151
CAR号	No．	9152
capn	NJ．	0153
CAOT	w－	0154
Cabd	No．	0155
can	No．	0156
CABn	＊2．	0157
CAP号	No．	0158
CADV	NO．	0159
CaOt	M？	0160
CAPD	Nサ・	0161
CARD	N0．	0162
CAOD	No．	0163
CAan	N0．	016
cap？	－	0165
CAP号	No．	0166
CAP）	0.	0167
Carn	\cdots \％．	0198
CAOA	$\cdots 0$	0169
PARA	No．	0170
CARI	No．	0171
Catn	No．	0172
Cas．	： 0	0173
CAP号	NO	0176
CAP号	\cdots	0175
caon	No．	0176
Caph	No．	0177
CARJ	No．	0178
CARI	NO	0.179

TABLE 2－4（Continued）

SLEEO	182	21	V1		J	9.1	n． 0	1.0	A0．	126.7				CAOT	0	n190
3LFEO	$\cdots \quad 42$	$? 1$	41		1	8.0	0.0	3.0	90.	126．0）				PAES	：3．	018！
R154	183	23	$\checkmark 1$		J	.33	． 05	0.0	？ 0					CAON	No．	0182
PISE	2 A3	23	N 1		J	． 33	． 05	3.0	？ 0.					CAOT	Nic．	0183
EAT ！	194	23	$\because 1$		J	． 75	.17	17.0	70.					CAOn	$\cdots 9$	0194
EAT 1	282	23	$\stackrel{1}{4}$		J	.75	.17	10.0	70.					¢．an＇	$\cdots{ }^{\prime}$	0195
HYtisen	－ 1 ¢ ${ }^{\text {a }}$	≥ 3	N 1		J	.33	． 10	3.0	30.					PADO	\cdots－	0186
TYSIENE	235	？ 3	4		J	.33	． 10	3.0	30.					CAD号	$\cdots \mathrm{n}$－	0197
Suls j？	185	23	1		J	－9？	.10	10.6	100					Cas	\cdots ．	0108
sult ：9	2 As	23	1		J	． 72	.10	13．0	ing．					CAD7	$\because 3$.	c100
Euress	1.87	29	2		1	．17	.05	15.0	100	199．5				CAD	$\cdots \mathrm{n}$ 。	0190
EGRESS	287	29			J	． 17	． 05	15.0	190.	12A．5				CADT	\％0．	0191
LSS：14	188	17	－	2	6	3.9	． 5	27.	9 c		9.09 .0	101		CAP？	ソ9．	0102
SCIE゙CE	1884	$1:$	3			4.7	． 5	n．	0.			181		CART	吹．	ก103
SCIEveE	≥ 883	18	3			6.7	.5	7.	0.			181		CAOT	P\％．	0194
InGress	188	29	2		J	.17	． 05	15.0	100.	135.2				CADT	＂0．	0105
INGRESS	289	\square^{4}			J	.17	． 05	15.0	100.	175．？				CAOT	$\because 0$	0176
Jissjt	193	23	1		J	． 72	． 10	$1 \% .0$	100.					CAOT	$\cdots \mathrm{n}$ 。	0107
Insult	293	23	1		J	． 92	－10	10.0	190．					CART	Mo．	0198
EAT？	191	23	\because		J	.75	． 17	10.0	70.	135.8				CAR号	90.	0199
EAT ？	291	23	v		J	.75	.17	19.0	77.	176.8				CARO	י10．	0200
SCleNCE	192	23	4		J	． 50	． 20	0.0	？5．					capr	日。	0201
Sileves	292	$? 3$	$N 1$		J	． 53	－ 20	3.0	25.					CADO	！ 0	0292
REST	193	23	v 1		J	1.00	.10	0.0	50.					CAQ7	10.	0203
QEST	293	23	$\cup 1$		J	1.90	.10	0.0	90.					Cas	$\cdots \mathrm{n}$－	3904
Sult c／o	194	23	v		J	.33	.05	19.0	90.	13P．7				can	$\because \mathrm{O}$	07.05
Soit ：／3	2.94	$2 ?$	41		J	． 33	． 05	10.0	90.	138.7				CAP号	19.	0206
Mir．4	1.95	23	y 1		J	1.0	． 97	10.0	50.					CADD	י\％．	．02n7
M，R，${ }^{\text {r }}$	295	23	v 1		J	1.0	． 20	10.0	50.					rabn	ソロッ．	njon
R．H．？	1.95	1.	41		J	1.8	． 20	10.0	50.					cast	\cdots－	0209
9， 4.0	295	23	＊		1	1.0	． 20	10.0	53.					CARD	10.	02.10
Eat？	1． 97	23	N		J	． 75	.17	10.0	70.	141.5				CAOD	1 n	0211
EAT ？	$2 \quad 97$	2	N 1		1	． 75	.17	13.0	70.	141.5				CAET	＂0．	0212
2ETIPE	1.98	23	41		1	.17	． 05	0.0	50.					CADS	－n．	0213
QETITE	293	23	v		J	.17	． 05	0.0	50.					CARJ	no．	0214
SLEEO	199	2.1	v		J	8.00	0.0	0.0	30.	19n．0				Cabit	＂n．	0215
SLEEO	$2 \quad 39$	2 ？	N		J	\％．00	n．0	0.0	9）．	159．n				CAOH	！0．	0216
R15：	1100	23	$\cdots 1$		J	． 33	.05	0.0	P0．					raon	： 2 －	3917
RISc	≥ 100	23	${ }^{\prime \prime}$		J	． 33	005	0.0	20.					CADT		0 018
EAT 1	1101	2.3	N		J	． 75	． 17	13.0	70.					cart	но．	0319
EAT 1	2101	23	N		J	． 75	． 17	10.0	70.					Cap\％	40.	0220
HYGIFYE	1102	23	：		J	－ 33	－ 10	0.0	30.					SaOt	40	0221
HYSIEVE	2102	23	M		J	－ 33	． 10	3．2	30.					caro	N？．	0222
Suli JP	$\cdots 103$	23	1		J	． 92	． 10	10.0	170					CAR？	ソo．	0273
Sult ild	\cdots	23	1		J	－ 72	－ 10	10.0	170.					CAOT	¢ 3 。	0224
Eiress	1104	29			J	.17	． 05	15.0	100.	182．5				capt	ye．	0225
Espess	2104	29	2		J	．17	． 25	15.0	170.	182．5			n ．	CADT	10．	0226
Logx	1	17	3		6							213		CARD	¢0．	0327
tona	2	17	3		s							219		caph	in．	0？28
ESA；	1105	18	3			2.15	． 5	30.	30.			$3: 4$		cann	1ก0．	0229
ESAl	2106	18				2.8	． 5	30.	90.			2is		CAQT	40	0930
SCIENCE	1106 A	18	3			2.5	． 2	0.	0.			215		CARD	！	2231
SCICNEE	21088	19				2.5	． 2	0.	0.			？ 1.		capn	\％	023 ？
INGMESS	1107	29			1	.17	． 05	15.0	100.	155．0				PaOt	vo．	0733
InfRESS	≥ 107	29			J	．17	． 05	15.0	109.	155.0					$\cdots \mathrm{r}$	09.94
UNSult	1108	23	1		J	－92	． 10	10.0	120.					CARD	NO．	0235
Unsutt	2108	23	－		J	.92	． 10	10.0	10.3					CAD！	$\because 0$.	09.96
EAT？	1109	23	$\checkmark 1$		J.	.75	． 17	10.0	10.	15s．5				CAOn	י0．	0737
EAT ？	$\because 109$	23	\cdots		J	． 75	.17	10.0	10.	256.5				CARD	10	0238
REST	1110	$2 ?$	$\cdots 1$		J	1.00	.10	0.0	50.					CAPD	vo．	0239

TABLE 2-4 (Continued)

[^2]TABLE 2－4（Continued）

SUT： 16	≥ 125	＜ 3	1		J	． 78	． 12	3．9	$?$					
EG7：${ }^{\text {cos }}$	1139	$\because 0$	？		J	.17	． 05	15．？	13．	200.5				1.
Egiess	21.39	29	2		J	.17	． 05	5.0	170	2no．s				4.
ESAB	1140	17	4	？	；	$1 . ?$	． 2	20.	53.		0.0	$? .0$	231	
conk	1	17	3	7	7								281	
LuJ	2	：	3	7	7								231	
ES＊）	2141	1%	3	i		2.1	． 3	10.	51.		． 5	． 5	292	
SCIEサCE	1282A	1 ？	3			2.7	.2	\cdots	0.				282	
SC！ewte	22828	n	3			？． 7	． 2	0.	0.				202	
luciess	$!142$	$? 7$	\％		\pm	.17	． 05	15.3	$17 n$.	2．39？				4.
InGasss	2142	20	？		J	17	． 05	：5．r	100.	239.2				4.
UnSult	1143	23	1		1	－9？	． 10	： 0.01	190.					
cineitit	2143	23	1		，	.92	． 10	：0．n	1×0.					
EAT？	i 144	¢ 3	－ 1		J	.75	.17	：0．0	70.	235.0				
EAI ？	？ 144	23	$\because 1$		J	． 75	.17	10．0	10.	3．95．J				
Rest	1145	$2 ?$	$\cdots 1$		J	－．00	． 10	0.0	50.					
RES	2． 145	22	41		J	2.37	.10	0.0	30.					
SCIECS	1146	13	41		J	4.50	． 50	0.0	70.					
SCiE＊EE	2146	13	y 1		J	4.50	． 50	0.0	70.					
Sulf con	147	210	11		J	． 33	． 95	$: 0.0$	90.					
Sult c／o	2147	210	41		J	.33	． 05	：0．0	＋ 0 ．					
E4t？	148	？？	$\cup 1$		J	． 75	.17	：2．n	73.	？ 11.5				
EAT？	2148	23	N 1		J	． 75	.17	：0．0	10.	211.5				
M，R．H	1149	23	N 1		J	1.00	． 20	； 0.0	50.					
M，F．H	2149	23	$\cdots 1$		J	1.00	． 20	：0．0	50.					
Pinis	1150	？ 3	$\therefore 1$		J	1.00	． 29	－ 0.0	50.					
R，4．p	2150	13	$\cdots 1$		J	1．co	－？ 0	－0．0	10．					
RETIPE	151	－	1		J	.17	． 05	0.0	50.	214.0				
RFTIPE	2151	23	： 1		J	.17	． 05	0.0	53.	214．0				
SLEF	1152	21	ง 1		J	4.3	1.0	0.0	90.	2？ 2.0				
SLEF：	2152	21	41		J	\＆．「3	$\bigcirc .0$	0.0	30.	223．0				
RISE	1153	23	$\because 1$		J	． 33	． 05	0.0	$? 0$.					
RISE	2153	23	$\vee 1$		J	.33	． 05	0.0	20.					
HyPiFyr	1154	23	$\cdots 1$		J	． 33	.10	0.0	30.					
HyGiteme	2154	23	$\cdots 1$		J	.33	.10	0.0	30.					
EAT 1	1135	23	$\cdots 1$		J	． 75	.17	10.0	70.					
Eat 1	2155	23	41		J	.75.	.17	10.0	70.					
Sutt ip	1150	23	1		J	－7？	． 10	：3．0	193.					
Sulf de	2156	23	1		J	． 97.	－10	－0．0	130.					
EGRES 5	1157	29	2		J	.17	． 05	25．n	130.	294．5				
EGRESS	2157	29	2		J	.17	． 05	：5．0	10.	224.5				
look	1	： 7	4		？								314	
Loux	2	17	4		？								314	
Esa 10	1158	18	3	2	J	2.7	． 3	20：	40.				115	
Est 10	2158	1 1	3	2	J	2.7	． 3	20.	90.				315	
FSA 11	1159	1 ¢	3	2	J	2.7	－3	20.	90.		1．9	1.0	3！6	
Esa 11	2159	$\frac{1}{1}$	3	，	J	2.1	． 3	20.	90.				316	
science．	1159 A	1 A	3			6.2	.5	9.	0.				316	
SCIf．lCE	21598	18	3			$6 . ?$	． 5	0.	0.				316	
InGitess	1160	29	2		J	.17	． 05	15．0	100.	230.7				
INGRESS	2100	29	2		J	.17	． 05	25.0	170.	230.7				
UnSult	1161	23	1		J	． 92	－10	10.0	170.					
UnSutt	2161	23	1		J	．97	． 10	10.0	170.					
EAT？	1162	23	41		．	． 75	.17	10.0	73.					
EAT ？	2162	23	41		」	． 75	.17	10.0	70.					
REST	1163	22	V1		J	1.0	． 10	0.0	50.					
RESt	2163	$2 ?$	N 1		J	1.0	． 10	0.0	50.					
Sctiricf	1184	13	41		J	1．13	． 40	0.0	39.					
SC！ENCE	2164	13	41		1	1.0	.40	0.0	50.					
sulf elo	1165	210	N 1		J	.33	． 05	10.0	90.					

Casn	\because－	0900
CADM	！	0201
CADD	ッก•	0302
CAOT	Y0．	3303
caon	＊8．	0.96
CAD？	\％	0305
CAOD	4 n 。	0206
Cant	ソロ。	0307
casn	：n．	2308
rabn	\cdots	0309
Carn	\cdots	U310
capn	vi．	0.311
CADO	$\cdots{ }^{-1}$	0312
CASO	\cdots	0913
CADO	$\because 30$	0314
CARD	上フ。	0315
PADM	Yn．	0.16
CAP号	v？	0317
CAD）	－ 0	0.18
CAOT	vก．	0.319
CADO	งก．	0320
CAPN	\cdots	0321
Cadi	NO．	0322
CARA	vo．	0323
CABn	－	0324
CADT	＊ 0 ．	0324
CAD？	vo．	0326
CAAT	＊n．	032.7
Cas？	－	0.27
CAET	กロ・	0329
CADT	\％	0.33 n
CARD．	vo．	0.391
EAOT	NO．	0332
CAOT	vo．	0333
CADD	No．	0334
CART	vo．	0935
CAOT	$\bigcirc 0$	0.3 .86
cap？	vo－	0331
CART	N0．	0338
CADT	40.	0339
caon	Mo	0340
Cas？	＊ 3	0341
CARN	40	0342
CAP品	N0．	0343
CADN	：n	9744
CAFO	\cdots	0.345
CAAn	N0．	0346
CARn	wno	0347
CARn	$\because 0$	0348
CAOM	$\cdots 0$.	0349
CAOD	NO．	0.350
CAET	ロ＊	0.351
CAOT	4．n．	025？
Cas？	ソก．	0253
CAD）	4.30	0354
CAOT	： 0 ＂	035.
CADI	บก．	0356
CADS	－	0357
CAR $]$	＊ 0.	0358
CaON	vo．	0.359

TABLE 2-4 (Continued)

7
7

TABLE 2－4（Continued）

LSS，${ }^{3}$	15411	，		42	J	3.0	． 5	20.	40.		6．a 9．0	372
LS5：13	25411	1 \％		42	J	3.9	． 5	20.	30.		5．3．	3 R ？
SCIEsce	1	1 8		3.		6.7	． 5	$?$ ．	0.			39？
SCTEVCE	2	8		3		6.7	． 5	0.	0.			39？
INGRESS	155	19		2	1	.17	0.05	15.0	170.	279．？		
Ingnfes	295	\cdots		2	J	．17	0.05	15.0	100.	270．？		
UNSU！	156	23		1	1	． 9 ？	0.10	10.0	170.			
UNSII！	256	23		1	J	.92	n． 10	10.0	100.			
EAT ？	157	23	ソ	1	J	.75	1.17	10.8	70.			
EAT ？	257	2 ？	4	1	J	.75	2.17	io．J	73：			
Scitive	1 A53	13	v	1	J	． 5	6．2	0.0	25.			
Scievt	2458	13	N	1	J	． 5	．1．？	0.0	75.			
REST	158	$2 ?$	－	1	J	1.0	3.1	0.7	50.			
RESt	238	$\geq ?$	4	1	J	1.7	：1．1	0.0	50.			
suli cog	15911	21.9	N	1	J	． 33	． 05	10.0	20.	233.0		
Sult こo	25911	$? 10$	N	1	J	． 33	． 03	10.0	90.	283．0		
M．9．4	160	210	V	1	J	1.0	1．？	13.0	50.			
M，2．t	\leq no	210	＇	1	1	1.0	11．？	10．3	53.			
R，H．O	$\because 61$	23	4	1	J	1.0	J． 2	50.3	50.			
Reit，o	151	13	4	1	J	1.0	1．2	50.0	50.			
EAT ${ }^{\text {a }}$	152	23	N	1	J	． 75	1.17	10.3	73.			
Eat 3	2 52	23	\checkmark	1	J	.75	7．17	19.0	71.			
RETIDE	16311	23	，	1	J	.17	.03	0.11	50.	2ag．0		
RETIRE	26311	23	v	1	J	.17	． 05	0.10	50.	286．0		
SLFEP	16411	21	＇	1	J	6．00	3.0	0.0	90.	20A．0		
SLEEO	26411	21	1	1	J	8.0	7.0	0.0	95.	294．0		
R15E	199	23	リ	1	1	.33.	.05	0.0	？ 3.			
RISF	249	23	н	1	J	．33	． 05	0.0	20.			
EAT 1	150	23	$\stackrel{4}{4}$	1	J	． 75	0.17	10.0	70.			
eat 1.	250	23	N	1	J	.75	2.17	10.0	70.			
hygieve	$151{ }^{\circ}$	23	N	1	J	． 33	3.10	0.0	37.			
hygiene	251	23	N	1	J	． 33	0.10	0.0	30.			
3U1T 11P	152	$? 3$		1	J	． 72	2． 10	10.0	170.			
Sutt ijp	$\geq \quad 52$	23		1	J	.92	2.10	10.0	$1 \rightarrow 0$.			
Egress	15312	29		2	．	.17	． 05	15.0	100.	296.5		
EGqESS	25312	20		2	J	.17	.05	15．0	100.	275.5		
Loox	1	17		，								414
Lonk．	$\underline{2}$	17		＋								414
LSSA 3	15412	18		4 ？	J	3.9	． 5	29.	30.		6.03 .0	415
LSSM 3	25412	18		42	1	3.9	． 5	20.	30.		6． 8.	415
SCIENCE	1	1.9		3		6.7	． 5	0.	0.			415
SCIE＇CE	$?$	18		3		6.7	.5	0.	0.			415
1HGxeSs	$i 55$	19		2	J	.17	2.05	：5．3	170.	313.2		
INGRES5	255	？ 9		2	J	． 17	0.05	15.0	$1 \sim 0$.	303.2		
unsult	156	23		1	J	．9？	0.10	10．0	190.			
unsut	≥ 56	27		1	J	.92	0.10	10.0	190.			
EAT？	157	23		1	J	． 79	3．：17	10.0	70.			
EAT ？	22 1	23		1	J	.75	0.17	10.0	70.			
SCIEvCE	1 A53	13	v	1	J	． 5	i）．？	0.0	25.			
SEIEVE	2453	13	4	1	J	． 5	9．？	0.0	？ 5.			
REST	158	22	v	1	J	1.0	3.1	0.0	50.			
REST	$2 \quad 38$	$2 ?$	，	1	J	之． 0	0.1	3.0	30.			
sult c／o	15912	210	\cdots	1	J	.33	． 05	10.0	90.	307．0		
SUIT C／O	25912	210	4	1	J	.33	． 05	10.0	9 C	377.8		
M，H， H	160	210	v	1	J	i． 3	3.2	10.0	30.			
M，R， 4	2 no	$2!n$	N	1	J.	1.0	0.2	10.0	30.			
R．H．0	161	13	4	1	J	1.3	0.2	50.0	50.			
R，4， ？	261	23	y	1	．	i． 0	0.7	30.0	50.			
EAT 3	102	$? 3$	9	i	J	． 75	3.17	10．0	73.			
EAT 3	2 Hz	23	4	1	1	． 75	0.17	10.0	70.			

CAD	ソ\％	0420
CAD）	$0 \cdot$	0421
CARD	N0．	． 0422
CAD	$N 0$.	0423
CaO？	40	042.4
CARD	－	0425
CAD？	NO．	0426
CAQD	40	0427
CARD	40.	0428
CAOT	$\because 0$	3429
CADN．	4n．	0430
CAOT	$\because 0$.	0431
CADA	－	9432
CADA．	40.	0433
CAQD	20．	043.4
CAPI	40.	0435
Ca＞刀	$\because 0$.	0436
Capn	40.	0437
［AR）	No．	0438
Cast	vo．	0439
raty	リカ．	0440
CAC7	40.	J441
CART	vo．	0442
cant	\％ 0	0443
CAD！	N0．	0444
CAP号	י\％	0445
CARD	N\％	0446
CAR号	NO．	0447
caón	40．	0448
CAgn	⒑	0449
CARD	40．	0450
CADI	＂？。	0451
CAP？	NO．	0452
CAOD	vo．	0.53
CAR？	No．	0454
CAPO	No．	0455
CADN	vn．	2155
capt	vo．	0457
CART	No．	0458
CADD	V0．	0459
CADI	No．	0460
CAOD	\％0．	0461
PART	リッ	0452
CART	N0．	0463
CAQD	N0．	0464
CADD	vo．	Dass
CAPS	N0．	0466
CADD	No．	0467
CAD＇	N0．	0455
CADM	10.	0459
CARI	$\cdots 3$.	0470
Cano	vn．	0471
CAOT	N0．	0472
CAOT	＂0．	0473
CART	4n．	0474
CART	NO．	0475
CAOn	＂0．	0476
CART	40.	0477
CARD	No．	0478
CARD	NO．	0479

CAPA	？	0480
carn	40	04.1
capa	Nの．	0482
CARD	Nの－	0483
CAOn	＂0．	0484
caon	＊n．	0495
Card	No．	0486
CAP＇	No．	0487
CAOD	＂n．	04.8
capt	No．	0449
CADD	！ 0	0490
CAOT	No．	0491
cant	N\％－	7492
caon	＂n．	0493
CAPA	N0．	0494
caf？	vo．	0495
cast	10．	0496
CADT	ッ0．	0497
Can！	No．	0498
Cap？	י\％．	0499
cape	N0．	0500
PAOO	N0．	0901
CAPV	N0．	0502
CARD	No．	0503
Carn	NO．	0504
cap！	－0．	0905
CAQ）	No．	0506
CAQ！	NO．	0507
cann	$\cdots 0$	0508
CAD，	－0．	0909
CAP？	NO．	0510
Cary	no．	0511
rafn	－	3512
CAR？	サn－	0513
CARA	no．	0314
CARD	No	0515
rant	19．	0516
CAPM	N0．	0917
CART	－0．	0518
CAON	ャก•	0919
Capt	リก．	0520
CADM	！n•	0521
CADV	10.	0522
Pary	No．	0523
can	＂9。	0524
CAOD	－10．	0525
CARD	H0．	0526
CARD	40.	0527
CAR？	40.	0528
CAPN	サn•	0929
CARD	40.	0530
CAQ）	110	0531
CAR ${ }^{\text {ch }}$	NO．	0532
CAQ	＂0．	0533
CAOD	40.	0534
Capy	HO－	0535
CaOn	＋9．	0536
CAOT	vก．	0537
CARO	40.	0536
CARD	40．	0539

3. Outside - time delay and emergency return
4. Repair - time required during scheduled repair period

The first type may occur during any task executed inside the shelter (not including ingress/egress tasks). A time delay is introduced in the schedule whenever this type of interrupt occurs. Since this tends to increase the astronaut's stress and his response capability, it will modify experimental task time.

The second and third interrupt types may occur any time an astronaut is outside the shelter. A type 2 interrupt again introduces a time delay into the normal sequence of task execution. On the other hand, a type 3 interrupt causes a disruption in the schedule as well as a time delay. In this case, the astronaut is forced to return to the shelter prematurely and to bypass remaining tasks in the base schedule. Computation of travel time for the return is based on the distance away from the shelter for the task and the rate of travel in the emergency mode. The actual interrupt time could account for a rescue trip by the other astronaut, time for minor equipment repair, or additional time required for return due to a slower-than-average travel rate.

The fourth interrupt represents time spent in repair during schedule repair periods. Any time a repair task is encountered in the base schedule, a draw is made to determine if there is anyting to repair at this time. If there is, a time for repair is drawn from the input time distribution.

Two inputs are required for each interrupt category:
o Probability of occurrence of the appropriate interrupt corresponding to a given task
o Median time duration for the delay induced by the interrupt.
In this study the interrupts were introduced with a frequency which would result in about one malfunction per mission, which would cause an emergency return while doing surface exploration, and one incident per day which would cause a schedule delay. These problems were introduced into the schedule as random events with variable time requirements. Schedule delays of $1 / 2-$, $1-$, and 3 -hr mean time were investigated. (Preliminary information indicates that interruptions up to $1 / 2 \mathrm{hr}$ were a mission certainty, whereas interruptions between $1 / 2$ to 3 hr had a probability of 0.016 per mission.)

The interrupt application is discussed further in Section 3, Case 2, in connection with its initial application in this report.

PARAMETRIC VARIATIONS

In addition to the analysis of a normal schedule with and without interrupts, various vehicle/astronaut speed conditions were assumed. The various conditions represent effects the lunar environment or vehicle design may have on the ELS/ LSSM mission. Normal astronaut speed and achievement of design vehicle rate are found in Case 1 of Section 3.

Many of the results reported herein were conducted independently by Honeywell. They are introduced into the report to indicate more comprehensively the result of varying performance and contingency situations.

"Page missing from available version"

$$
\text { pages 2-17 through } 2-24
$$

TABLE 2-12
THREE-MAN TIMELINES FOR FIRST LSSM SORTIE (APPLIES TO ALL MISSIONS)

Atatim	Lextoon	Time	actury	Emumpert		How wor	xc.	Commens	Lexation	rimel	Activer	Expriment	${ }^{\text {cememm }}$	How resed	mc.	Commens	Leaston	Time	Aatumy	Emamment		Hoousd	\% 6	Comment
1	Oneate	10		sper plss	${ }^{29}$	Casmet tmm menerer to	\llcorner		Sutite	10	Ssme sas seromaut	PLS	${ }^{20}$	Same asas.ironau	\llcorner		Stelur	10	Moriter So. amax No. 2,		\cdots	...	s	
=	${ }^{\text {Lssm }}$,	Cismm drivert ent of	...	\cdots	--	$\stackrel{1}{4}$	${ }_{\text {L }}$	Lssm	:	Cumb bopas. esea	\cdots	\cdots	\cdots	\llcorner		Ssemer				2.4	$\mathrm{m}_{\mathrm{y}}^{\mathrm{mand}}$	s	
,	Lsm	10	Drive en headice, 1 km	Comro, tick	...	---	s		${ }_{L}^{\text {Lss } M}$	10	Turan on naseseometer	Magereateres	,	Tura on, chece	s		Stener	${ }^{20}$			2.3	$8_{\text {B mand }}$	m:	
-	surree	${ }^{25}$					L		LSsm	${ }^{25}$			$\begin{aligned} & 23 \\ & 39 \end{aligned}$		${ }_{5}^{5}$		smener	15		visem	\cdots	From saked pention.		
-	Lssm	"	Drive km	A $\operatorname{lin}^{2} 3$	\cdots	\cdots	L-s		Lsm	\square	Asin s .	\cdots	\cdots	\cdots	s	Tumanom magecometer	Ssereter	2	Amaysts of amples	As in 3	...	From ceacd ponism.	s	Unens equemmm
-	Surrace	${ }^{25}$			0.9		$\stackrel{1}{ }$		${ }_{\text {csm }}$	${ }^{25}$	same sat	\cdots	\cdots	\cdots	s	Asint	Smener	is	Asint. \|	\cdots	\cdots	\cdots	s	au srom seace montice.
,	Lssm	"	Drive ım			Smme ${ }^{\text {a }}$ tome	s		Lsss	"		\cdots	--	smme	...		Sterer	${ }^{2}$	Aatysiot ot smper	s	
-	Surtace	25	Experimans			Smene a atove	$\stackrel{1}{2}$		Lss,	25	Asins.	...	\cdots		...		Smener	15	As.ind				s	
\cdots	Lssm	${ }^{1}$	Drve 1 mm			Sameis atave	5		Lssm	-		\cdots	\cdots	...	\cdots		smeter	2					s	
10	Surrace	${ }^{25}$	Experrmeas			Smme as apowe	$\stackrel{1}{4}$		Lss.	25	Asin.	...	\cdots	\ldots	\cdots		Sterter	15	Asin.	\cdots	\cdots	...	s	
"	Lssm	"				Smme as bove	5		Lssm	-	Asme 3.3.	\cdots	--		Sneleter	${ }^{21}$	Went	...	\cdots	\cdots	${ }^{\text {m }}$	
12		${ }^{1}$		Comet	${ }^{2} \cdot 1{ }^{1 / 8}$		$\stackrel{1}{2}$			15		$\substack{\text { Tad plss } \\ \text { fim pect }}$	${ }^{2}$ \%. ${ }^{\text {e }}$	Smme sasaramat	\llcorner		sproter	5		Stmes 5			${ }_{\text {m }}^{\text {m }}$	
Ratere time 20 minil																								

Page intentionally left blank

TABLE 2-13
THREE-MAN TIMELINES FOR SECOND LSSM SORTIE (APPLIES TO ALL MISSIONS EXCEPT ALPHONSUS LSSM - LSV; EXPANDED SATELLITE ESS SORTIE IS FOR EXPANDED ESS MISSION

Atatimer	Lomaton	Time	Aetuty	Euximere	${ }_{\text {wisfu }}^{\substack{\text { cifit }}}$	Homued	${ }_{\text {ma }}$	commens	Locaton	Time	Actury	Saupmea		How vesed	mс	Commens	Location	Time	Actury	Equtrem		Hoov ved	ma	commm
	Sostiter	is	Checectan eas Leact Lssm		${ }_{\substack{3 \\ 102 \\ 102}}$		L		Onticer	15	crectat		¢		$\stackrel{1}{ }$		Steriter	${ }^{\text {is }}$		$\underset{y}{\text { y,amatat raio }}$	\cdots	\cdots	s	
2	Lssm	"	Drive tim	Comro sunk	...	By hasd	s	metas ceat to cororee rss	ussm	"	Pepere ss or oromosatis	\ldots	\cdots	From eatars onotion	s		Sereser	"	Earn dasa rasammar	Ratio	...	By	s	Alsomantor Lssu
3	surtace	${ }^{20}$		${ }^{\text {mam drin }}$	${ }^{\prime}$		'		sortace	${ }^{20}$		${ }_{\text {Pexser }}$ Pex for	${ }^{3}$		$\stackrel{ }{ }$		Steler	10	Meorior Lssm		\cdots	Sitan	m	
-	tack	130	Prul	${ }_{\text {des }}^{\text {des }}$	$1{ }^{10}$		vi		Ssurace	150			${ }^{102}$		$\begin{gathered} \mathrm{L} \\ \mathrm{vi} \\ \mathrm{~L} \end{gathered}$		Stater	${ }^{120}$	Earth data transmittal. Perform some geological inatysis. Spot monitor. analysis. Spot monito ing of LSSM Crew.		\cdots	From eneed osation	s	Nand
5	Surrace	30	Repice Plss	Spere Plss	${ }^{29}$	strpere of trom Lssm	2	Ineme	Ssrrace	${ }^{30}$			${ }^{29}$	Stisgim fram rack on	$\stackrel{\square}{4}$		Smener	${ }_{20}^{30}$					s	
-	surtace	15		3m. driù	${ }^{\prime}$	Losede by hame	\pm		Surrace	15		Sesmosat trom min	${ }^{2}: 3$	Pateme	2		Ssener	${ }^{25}$	Compteces sceatitic	mas spectome	---	serect	s	
,	Surface	10	Finatememe frss	Teremeier	\cdots	- -	s	Sticle	Surrace	10	Smme s astroamem	Stme A Arronat	.-	smeme	s		Ssaterer	10	oxtana	${ }^{\text {Trasascie }}$		Standieq	5	
-	Lssm	${ }^{\prime}$	Dive cosoteter	Control tita		By mand	s		${ }^{\text {Lssm }}$	"	Ride Ls sm				s		Sereter	"				strung	5	
,	$\begin{aligned} & \text { surficie } \\ & \text { dimeter } \end{aligned}$	${ }^{18}$		Psts, am. rout	${ }^{2} 4$	Comrict os onater	$\stackrel{1}{ }$			15	Unoesat usa Priss	pus	${ }^{24}$	Carried by mand	$\stackrel{1}{4}$			${ }^{5}$	Intan					
$\underset{\substack{\text { Rimfer } \\ \text { lime }}}{ } 35$ mineter																								
NOTES ON THIS SORTLE 1) Total sortie devoted to emplactag main ESS $t \mathrm{~km}$ from shetter 2) Maximum time is 5 hours, 12 minutes. This means Sortie 1 is a poor candidate for the same day as Sortie 2. Local ESA could be performed on the same day, though. 											MEASUREMENTS TAKEN Continuously Sample collection on retur At the Stop (1) Drill core collection	LSSM map		ROUTE					!					

Page Intentionally Left Blank

TABLE 2-14
THREE-MAN TIMELINES FOR THIRD LSSM SORTIE (APPLIES TO ALL MISSIONS)

	Locesion	Trime	Aeturs	${ }^{\text {Emapmemer }}$	Weitic	How ued	${ }_{\text {wa }}$	Commma	Losater	Time	Acturs	${ }_{\text {soutmmet }}$	wipan	How teed	mo	comment	Loertan	T me	AEmpry	Eavimmm	${ }^{\text {matimu}}$	menes sest	mc	commens
1	Somen	${ }^{10}$	Crectasain int ios it ism	Sime	${ }^{29.5}$		${ }^{\text {vi }}$	Comen	Soble	10	Lemen	Spare PLSS, Pene- irometer, surface electical and	-	Cisme	VL		Ssenter	10		visal Rasio		cher	s	
2	Lsm	3	Orive 2 km	Coricas trick		${ }^{\text {a, }}$ hama	s	Ineme	$\stackrel{\text { Lssm }}{ }$	${ }^{2}$	Smpaticive ion		0.2	Stame	s		Ssenter	${ }^{26}$		$\begin{aligned} & \text { Petrographic } \\ & \text { analysis kit,micro- } \\ & \text { grope. tections. } \end{aligned}$	9		$\mathrm{s}^{\text {m }}$	
	sinfic						${ }_{\text {s }}$		surface	${ }^{15}$		$\begin{aligned} & \text { Laser rangefinder } \\ & \text { and theodolite } \\ & \text { Photorraphy and } \\ & \text { radiometry gear } \\ & \text { Map and pen } \end{aligned}$			$\left\{\begin{array}{l} \mathrm{s} \\ \text { w. } \\ \mathrm{s} \\ \mathrm{~s} \\ \mathrm{~L} \end{array}\right.$		Sspener	10			${ }^{23}$	Musi get up and aim through window	m	
-	Lssm	${ }^{21}$	Drive km	Comere stick	-	${ }_{8, ~ \text { ham }}$	s	Corrine on oneatiar	Lism	${ }^{21}$	As in 2	.-.	\cdots	\cdots	-		strater	${ }^{26}$	Cominut miorea	...	----.
$\stackrel{\square}{5}$	surnace	$1{ }^{18}$	As.mb			\cdots	$\stackrel{L}{5}$		surrace	15					\cdots	--	Streter	\square	Asm	\ldots	\cdots			
-	${ }^{\text {Lssm }}$	${ }^{2}$	Dries 3 km	${ }^{\text {Conrolo tiek }}$...	${ }_{8} \mathrm{~s}_{\text {hame }}$	${ }^{5}$	Contioce on onasaing	Lssm	${ }^{21}$	${ }^{\text {As in }}$ 2	\cdots	\cdots	\cdots	\cdots	----	smener	${ }^{26}$	${ }_{\text {a }}^{\text {a }}$	crue mypmem	6.8	\cdots	\cdot	
	sintee	${ }^{25}$	Anins mate		4		${ }_{s}^{\text {Lit }}$		Serrice	${ }^{25}$		$\begin{aligned} & \text { sime } \\ & \text { semenectr } \\ & \text { nationemery pere. } \end{aligned}$	$\begin{aligned} & 2.7 \\ & 1.5 \\ & 1.5 \\ & 3.2 \end{aligned}$		$\begin{gathered} \mathrm{mL} \\ \mathrm{~mL} \end{gathered}$		Sneser	${ }^{20}$	Men		${ }^{2}$	Fick	$\begin{array}{\|c\|} \hline \mathrm{s} \\ \mathrm{~mL} \\ \hline \end{array}$	
\bigcirc	${ }^{\text {LSSis }}$	${ }^{21}$	Drine zam	Comal asick		${ }^{\text {Br mame }}$	5		Lssm	2	$A_{\text {A }}^{\text {in } 2}$	\cdots	\cdots		s		steter	${ }^{26}$		Rasio		From raceat pestion	s	
.	Surrace	${ }^{25}$	A0 in ${ }^{\text {a }}$	${ }^{\text {sume }}$	\cdots	${ }^{\text {as hama }}$	${ }^{\text {v.t. }}$	\cdots	Surtace	${ }^{25}$	Asini	Sme	\cdots	...	L. 5		Seater	${ }^{20}$	Ammpri pecmeme		...	Sor sompe ab	${ }_{5}$	
10	${ }^{\text {LSSM }}$	${ }^{21}$	Drive 2 km	Commol tick	\cdots	${ }_{8}{ }^{\text {r maxd }}$	5	entari ieg	Lsmm	${ }^{2}$	$\mathrm{As}_{\text {sin }}$	sme	\cdots	\cdots	s		Sereier	${ }_{2}$	S	5 Smpariabe		Frome satas osmen	5	
"	LSSM	50	Piss oxcriase	Spereprss	${ }^{29}$		${ }^{\text {L. VL }}$		Lisin	${ }^{30}$	Puss extmare	Spere Puss	${ }^{29}$		n.t		siler	${ }^{0}$			\cdots	From sar	s	Seremm. rasp iss meme
12	Ssirtae	13	$\operatorname{As}_{\sin 3}$	Stame	\cdots	, ...	v.L.	No meamaysas biencd	surfare	15	Astins	\cdots	...	\cdots	xuLs	Noin suw mearemems	Steler	10	Asins.	-	\cdots	\cdots	wn. 5	
13	Lsm	${ }^{21}$	Orre 2 km	--.	---	.-.	s	Turnios semer	Lssm	${ }^{1}$	As in 2		\cdots	...	s		Sneter	${ }^{26}$		--	...	Sexte	s	
5	Sirnace	${ }^{18}$	${ }^{\text {Anin3 }}$		\cdots	\ldots	vit		Surface	${ }^{15}$	Asins	\cdots	\cdots	\cdots	m.s.		Smetier	10	Asins	-	\cdots		s	
15	Lssm	${ }^{21}$	Drive 2 km				s	Cominamit ostater	$\stackrel{\text { Lsm }}{ }$	2	As in2				s		Smeter	26	Funamatum				5	
${ }^{16}$	Surlace	15	As in 3				v.L		surrace	13	Asm ${ }^{\text {an }}$				mL.s		Seneter	10	Astins				5	
1	${ }^{\text {Lsem }}$	${ }^{21}$	Divie 2 km				s		${ }^{\text {Lsm }}$	${ }^{2}$	nxin ${ }^{\text {a }}$				s		Sneter	${ }^{2}$	Some				мt	
	Ontuc	15					"		Onture	is	$\begin{aligned} & \text { Unload LSSM, } \\ & \text { transport gear } \\ & \text { to shelter } \\ & \hline \end{aligned}$	(tay			vis		Sneter	13						
Buter erios 0 momece			NOTES ON THLS SORTLE 1) This is the standard 6 -hour scientific measuremems and sample collection sortie which was scheduled for 8 out of 12 LSSM sorties on the four baseline 2) Twenty extra minutes have been added to the timeline to make gas analysis and in atu meaurements. These oc cur on 2 or 3 of the 8 ancties. OUner 3) The revised timeline of this sortie, based on workload estimates and task times reported in the NASA Guidelines. makes allowance for 715 -minute stops enruute instead of it existing sortie schedules. 5) PLSS exchange will occur when about 45 minutes of life-support expendibles are leti in the PLSS in use. This can happen anywhere from 2 to 4 hours into the sortie. 6) Driving times are based on an average soeed of 6 kmh , with 1 minutp to						SORTIE SUM Range Rachus Butter Total Stops:	MARY									not					

Altwor ans siope

Page intentionally left blank

为

SECTION 3

RESULTS

GENERAL
The HASSLE program has been applied to the schedule in Section 2. Each application is iterated 30 times by the program to establish the mean and its variance of designated parameters. Variations are due to the introduction of human variability and stochastic interruptions by Monte Carlo techniques. The following cases were analyzed by the program:

Case 1 - Perfect "nominal design" mission.
Case 2 - Effect of a minimum schedule interrupt on a "nominal design" mission.

Case 3 - Effect of variations in LSSM speed.
Case 4 - Effect of variations in astronaut speed.
Case 5 - Effect of 7 vehicle/astronaut conditions.
Case 6 - Effect of increased schedule interrupt.
These results summarize the data of over 2000 iterations or executions of the schedule in various situations. The use of an analyical model of the operators to conduct "experiments" or iterations is the only known way of studying the sensitivity of the man-vehicle-mission model to various contingencies or design changes.

CASE I - PERFECT "NOMINAL DESIGN" MISSION

Conditions

Normal Astronaut Speed	Nominal
Nominal LSSM Speed	$6 \frac{\mathrm{~km}}{\mathrm{hr}}$

Scheduled Interruptions None

Discussion

In this case, the proposed schedule is carried out as per plan, with only an occasional repair task occurring during an allocated time. This would correspond to a perfect nominal mission with schedule preventive maintenance. Under this condition, 76 percent of the assigned scientific tasks are accomplished. Only 76 percent of the schedule scientific tasks are accomplished due to the introduction of the "Science" tasks mentioned in Section 2. These tasks
are beyond the expected "normal" capability of the crew but do not interfere with any essential or priority tasks. In this case, all priority tasks are accomplished and require $12.6 \pm 0.8 \mathrm{hr}$ per mission. The variance is due to the expected human variation for each task and mission. Nonpriority scientific tasks are accomplished for $96.6 \pm 3.5 \mathrm{hr}$ while $30.4 \pm 2.8 \mathrm{hr}$ are ignored.

The HASSLE program summarizes the 30 iterations of each into graphicalnumerical outputs. Figure $3-1$ is a summary of the time spent in various categories of activity for this condition. Ten categories of events are handled within the program:

1. Sleep
2. Rest
3. Miscellaneous (reports, planning, eating, suiting)
4. (Not used in this analysis)
5. Monitoring (computed)
6. Travel time
7. Priority scientific tasks
8. Nonpriority scientific tasks
9. Ingress/Egress
10. Repair (M, R, H - Suit C/O)

Other data summaries are available within the program. Figure 3-2 is a tabulation of the activities which must be ignored during the mission, due to all contingencies such as lack of time, interruptions, and lack of priority.

Variation of safety level and astronaut stress is shown in Figures 3-3 and $3-4$. The stress levels are conducive to good performance, and the amount of time at highest (3 and 4) safety levels is nominal. (Safety level 1 is defined as the safest level.) Category 5 level of Figure 3-7 is the total interrupt delay introduced into the schedule, zero in Case 1.

Conclusion

The conclusion is reached that the astronaut will be able to complete the nominal schedules, even when normal human variations are experienced.

The importance of this "normal" case is the comparison of it to other potential situations.

67-1964-6
Book 3
SIG TIME VE CATFGORV

aytitime catlgitay

-269278 03	- Londone ol
-15293r 0 ?	-30ATCE 5:
-19576E 0.5	-30000e fl
-00n00r-br	.40none Ol
- A43A4E 5	- A9n908 Cl
-125495 07	- bobuje di
-12600F 02	. $70 n 00 \mathrm{Cl}$
-96535E D?	- AOCODE Ol
-6bsner 0]	.900Jne fil
.24417 0 \%	.99790E C1

Figure 3-1. Case 1-Perfect Nominal Design Mission. Average Time vs Category

ri4t 19
Catrigay

- :urone Cl
-ininne us
-30.ane bi
- 40:0ne ol
-44.890F o!

$\because \because n \cdot 31 E \mathrm{Cl}$
- AOVONE

-9 nringe OI
-79.8 OIE OI
-34748r-11

Figure 3-2. Case 1 - Perfect Nominal Mission. Time Ignored vs Category

Figure 3-3. Case 1 - Average Time vs Safety Level Perfect Nominal Mission

Figure 3-4. Case 1 - Peak Astronaut. Stress vs Day. Perfect Nominal Mission

CASE 2 - EFFECT OF A MINIMUM SCHEDULE INTERRUPT ON "NOMINAL DESIGN" MISSION

Conditions

Astronaut Speed
LSSM Speed
Interrupt Condition

P_{1}	Type
	1 inside time delay.
	2 outside time delay
	3 outside-emergency
	4 repair (scheduled)

Normal
6 km/hr (Nominal)
P_{1} (defined below)
Probability/
Task

Mean Time,
$\frac{h r}{0.33}$
0.08
0.33
0.02
0.04
0.02
0.6
0.5

Discussion

The following procedure is used to introduce the interrupt forcing function into the HASSLE program. For each task, the program determines whether or not an interrupt occurs according to the logic of Figure 3-5.

The type of each interrupt is determined in terms of the type of task being accomplished, e.g., repair, inside, or outside the ELS task. Whether or not the interruption takes place is determined from a random number draw, whose distribution is defined by the input schedule probabilities. If a delay occurs, the exact time of the delay is also randomly determined with a mean value of delay assigned by the input schedule. The schedule is repeated 30 times to allow the evaluation of the interrupts occurring at random times under various circumstances. HASSLE prints out one output schedule (the initial iteration) of each condition to allow a detailed analysis of what is occurring and a summary of the results of the 30 runs for the particular condition. Table $3-1$ is an output schedule for Case 2.

Interrupt probability P_{\mid}will cause the individual missions to experience about 1 or 2 "type $3^{\prime \prime}$ interrupts (outside interrupt causing an emergency return to the ELS) per mission. About one mission in four will not have a type-3 interrupt. Detailed examination of 12 schedule iterations indicated 18 , type-3 interrupts occurred. The sample schedule for Case 2 (Table 3-1) contains two "type-3" interrupts. The first one occurs at mission time 107.70 hr , after the priority task ESA 5 is completed and does not affect the primary schedule. The second occurs at mission time 176.50 hr and causes an immediate ingress without accomplishing the priority scientific exploration task.

Type-I and -2 interrupts are time delays which affect schedule and modify astronaut behavior. They will occur on the average of once a day. A detailed

HASSLE INTERRUPT LOGIC

Figure 3-5. HASSLE Interrupt Logic

TABLE 3-1

CASE 2-SCHEDULE OUTPUT

AIRESEARCH MANUFACTURING DIVISION

TABLE 3-1 (Continued)

TABLE 3-1 (Continued)

aIRESEARCH MANUFACTURING DIVISION

TABLE 3-1 (Continued)

aIRESEARCH MANUFACTURING DIVISION

TABLE 3-1 (Continued)

examination of 10 schedule iterations indicated 150 type-1 and $\mathbf{- 2}$ interrupts occurred or a mean of 15 per 14 -day mission. The sample schedule for Case 2 (Table 3-1) contains 10 type-1 and -2 interrupts. In Case 2, these interrupts have a mean time of $1 / 2 \mathrm{hr}$, a minor daily delay. Type-4 interrupts occur as schedule tasks that have minimum effect on schedule output. These interrupts represent casual or preventive type of maintenance.

The P_{1} frequency of interrupts is felt to be a minimum type of schedule contingency which would occur. It is considered realistic for the system complexity being considered, with equipment which is highly reliable and operated correctly. The Pl probability of interrupt is used throughout this analysis. Other cases investigate the impact of increasing the mean interrupt times, but not the frequency of occurrence. P_{2} will represent interruptions with a mean delay time of one hour and P_{3} a mean interrupt time of three hours.

Figures 3-6 through 3-9 are summaries of the schedule results of introducing the P_{I} interrupt forcing function into the basic schedule. The percentage of total input scientific tasks achieved is reduced to 65 percent, about a 16.5 percent decrease in total achievement from the normal or Case 1 sit .tion. Totals of 1.27 hr in priority tasks (\simeq^{10} percent of the total priority tasks) and 47.0 hr in nonpriority ($\simeq 25$ percent of total nonpriority tasks) are being ignored on the average astronaut stress and safety were not affected by the minor schedule interruptions of P_{1}.

Summary
The schedule accomplishment appears very sensitive to minor contingency conditions. The problem may lie in the inability to reschedule the long LSSM sorties in the present schedule. The tasks vary greatly in time requirements, so it is difficult to find a new schedule time for longer tasks. Since the longer LSSM sorties are near the limits of system capability, the apparent solution is to reduce the range of LSSM sorties when faced with reschedule problems. The study predicts this may happen.

CASE 3 - VARIATIONS IN LSSM SPEED

Conditions

Astronaut Speed
Nominal
Interrupt
Vehicle Speeds
P_{1}
2, 4.33, 6, 15 and 30 km .

Discussion

Figure $3-10$ is a summary of scientific accomplishment versus LSSM speed for P_{f} interrupts. Each point plotted represents the mean of 30 iterations. A major effect in schedule capability is forecast if LSSM speeds are below 5 $\mathrm{km} / \mathrm{hr}$. Additional LSSM speed appears to have little advantage for the proposed schedule. Figures 3-11 and 3-12 are data summaries of the P_{1} interrupt

67-1964-6
Book 3

avg picte category

.27943E 03	. 10000801
-14034E 02	-200008 01
.18492F 03	-30000E O1
- 0 anoor-80	-40000E 01
.732.38 02	-49990E 01
. 12239802	.60000E 01
-132019 02	. 70000801
-44845E 02	-80000E 01
.63996\% 01	.90000E
.23675\% 02	.99990E

Figure 3-6. Case 2 - Average Time vs Category P_{1} Interrupts on Nominal Mission


```
            ttME ig category
\begin{tabular}{|c|c|}
\hline .24839E 00 & -10000t 01 \\
\hline -17a08 00 & -200002 01 \\
\hline .83823r 00 & -30000E O1 \\
\hline .00000F-80 & -40000E O1 \\
\hline . 90000E-80 & -49990E O1 \\
\hline .00000E-80 & -6000RE Cl \\
\hline .12767E-01 & -70000E C1 \\
\hline .46997E 02 & -80000E C1 \\
\hline .50353E-11 & -90000E O1 \\
\hline .00900E-80 & .99990E O1 \\
\hline
\end{tabular}
Figure 3-7. Case 2 - Time Ignored vs Category. P, Interrupts on Nominal Schedule
```



```
        avg time safe lev
        .55290E 03 :10000E O1
        .10464E 02 -20000E O
        M5335F 02 :$0000E C
        -0N000r-80 -49990E-02

Figure 3-8. Case 2 - Average Time vs Safety Level. \(P_{1}\) Interrupts on Nominal Mission

\begin{tabular}{|c|c|c|}
\hline PEAR & STR & Day \\
\hline . 62757 F & 00 & .10000E 01 \\
\hline .87074E & 00 & -20000E 01 \\
\hline -47019F & 00 & - 30000 01 \\
\hline .44788E & 00 & -40000E Cl \\
\hline .43243E & 00 & -499908 01 \\
\hline .66612E & 00 & * 60000801 \\
\hline .37622E & 00 & . 70000t 01 \\
\hline .52809F & 00 & .80000201 \\
\hline .27054E & 00 & -90000E 01 \\
\hline . 35022 E & 00 & . 99990801 \\
\hline . 55076 & 00 & . 11000802 \\
\hline \[
\begin{gathered}
.4730 \mathrm{E} \\
043171
\end{gathered}
\] & \[
\begin{aligned}
& 00 \\
& 00
\end{aligned}
\] & \(+12000 \% ~\)
\(\cdot 130002\)
-12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline .1557E 00 & .1347E 00 & . 5905 E. 02 & -3952E-01 & -3637E-01 & .2088E-01 & .1831\% 00 & .3677E-01 & -4549E-01 & -3816E-01 \\
\hline -3293E.01 & .4724E-01 & . 4998 E-01 & & & & & & & \\
\hline
\end{tabular}

Figure 3-9 Case 2 - Peak Stress vs Day. \(P_{1}\) Interrupts on Nominal Mission


P S: Pase eJu: Lsisesper






Figure 3-10. Case 3-Variation in LSSM Speed Percent Scientific Tasks Completed vs LSSM Speed


Figure 3-11. Case 3 - Variations in LSSM Speeds Travel Time vs LSSM Speed


Ayrg sarepy bert uss: soreo
.14806 n . 0 00.30) 01


.14 gasFO OI .13300E CI
-12094r al -20RODE Ol

Figure 3-12. Case 3-Variations in LSSM Speeds Average Safety Level vs LSSM Speed
case for travel time and average safety level. The reduction in travel time, seen at speeds less than \(4.33 \mathrm{~km} / \mathrm{hr}\) (Figure \(3-\mathrm{ll}\) ) is due to the inability of the program to attempt the longer sorties. This causes the astronauts to remain within the "Safe" ELS. Figure \(3-12\) indicates the relative stability of the predicted safety levels for speeds above \(4.33 \mathrm{~km} / \mathrm{hr}\) at the \(\mathrm{P}_{\mathrm{I}}\) - \(1 / 2-\mathrm{hr}\) interrupt case.

\section*{Conclusion}

Schedule achievement is very sensitive to slight reductions in vehicle speed capability. Major revisions in schedule will be required if vehicle design or operational conditions (lighting, terrain, etc.) are encountered. Schedule achievement is relatively insensitive to increases in vehicle speed capability. Astronaut safety and stress seem insensitive to the vehicle speeds other than the case where the LSSM sorties are abandoned due to lack of vehicle capability.

CASE 4 - EFFECT OF VARIATIONS IN ASTRONAUT SPEED

\section*{Conditions}

Astronaut Speed
Reduction in capability 40 percent
Increase in capability
LSSM Speed Nominal ( \(6 \mathrm{~km} / \mathrm{hr}\) )
Interrupt Condition

\section*{Discussion}

Figures 3-13 and 3-14 summarize the important results of variations in schedule accomplishment as astronaut speed is varied. The \(1 / 6-g\) lunar environment is reported to produce a major impact on astronaut mechanical capability (see References 3, 4, and 5). If this is the case, an estimate of the effect is of interest. The HASSLE program introduces the astronaut speed to vary the rate at which astronaut tasks are accomplished. Figure \(3-13\) indicates that the accomplishment of scientific tasks is highly dependent upon this factor. The 0.6 speed point represents the astronaut accomplishing tasks at 60 percent of the time required nominally.

The program predicts major improvements in safety with increased astronaut capability (Figure 3-14). The increased capability creates additional spare time in the ELS (Figure 3-15), since unused time within the ELS is programmed to added sleep at the conclusion of each day.

These results are interesting in terms of their implication to lunar exploration. The development of schedules predicated on task time requirement nominals associated with either earth- or \(0-g\) can lead to a major schedule disparity. This situation could result in having a major mismatch of man and his equipment.

.64692E 02 -10000E 01


Figure 3-13. Case 4 - Variation in Astronaut Speed Percent Scientific Tasks Completed vs Astronaut Speed


\section*{avg safety level speg}
\begin{tabular}{ll}
\(.14806 E\) O1 & \(.10000 E 01\) \\
\(.13739 E\) & 01 \\
\(.14591 E\) & \(.60000 E 00\) \\
& \(.14090 E\) \\
\end{tabular}

Figure 3-14. Case 4 - Variation in Astronaut Speed Average Safety Level vs Astronaut Speed

67-1964-6
Book 3


Figure 3-15. Case 4 - Variation in Astronaut Speed Total Mission Sleep vs Astronaut Speed

\section*{Conclusion}

The nominal task times to be employed in constructing lunar exploration schedules should be the subject of a major study.

\section*{CASE 5 - EFFECT OF 7 VEHICLE-ASTRONAUT CONDITIONS}

\section*{Conditions}

> \begin{tabular}{l}  Astronaut Speed \\ (x, normal rate) \\ \hline \end{tabular}

1
2
3

4

5

6

7
1.5
1.4
1.2
1.0
0.8
0.6
0.5

Vehicle Speed \(\mathrm{km} / \mathrm{hr}\)
2.00
3.67
4.33
6.00
15.0
24.0
30.0
\[
\text { Interrupt } \quad P_{1}
\]

\section*{Discussion}

The lunar environment will impose constraints on the LSSM/ELS system. Prior to the obtaining of additional information from a manned landing or from unmanned vehicles, mission, and vehicle planning must consider the effect of a range of expected environmental conditions. As examples, simulations of lunar lighting conditions have shown that the astronat may have difficulty in driving vehicles safely at any but extremely slow rates. NASA Langley Research Center (LRC) simulations of pressure-suited \(1 / 6-\mathrm{g}\) mobility indicate a surprising increase in capability.

To investigate the probable effect of this on the proposed mission, seven conditions were chosen which represent one spectrum of expected astronaut and vehicle conditions. These conditions are listed above and summarized in Figure 3-16. It was assumed that conditions which hinder vehicle travel would also hamper astronaut performance, e.g., lighting problems would cause reduced vehicle speed and would also cause the astronaut to spend more time in his tasks. Condition 4 represents a nominal astronaut with a vehicle operating at design speed of \(6 \mathrm{~km} / \mathrm{hr}\). All analyses were conducted with a \(P_{\text {l }}\) interrupt present.

Figure \(3-17\) is a summary chart relating predicted scientific accomplishment for the seven conditions. The mission appears extremely sensitive to small reduction in vehicle-astronaut capabilities and does not appear to have


Figure 3-16. Case 5-Seven Vehicle Astronaut Speed Conditions of Study


Figure 3-17. Case 5-Scientific Task Accomplishment vs Conditions with 1/2-hr Average Interrupts of \(P(0.08,0.02,0.02,0.5)\)
much capability to recover until major changes in LSSM and operator speed are made (at least to condition 5). The nonpriority scientific tasks are very sensitive to vehicle/astronaut speed conditions (Figure 3-18).

Performance below condition 3 appears to be very restrictive to mission accomplishment. This is evidenced by the inability to attempt the longer missions under such conditions (see Figure 3-19). Travel time decreases for conditions 1 and. 2 because the LSSM sortie is impossible for these situations.

Safety levels for the various conditions are not affected as one might expect with reduced performance (Figure \(3-20\) ). This is a result of the program not undertaking sorties under low performance conditions, and thereby having the astronaut remain in his "safe" shelter. If the program attempted the lower performance mission, high hazard levels would be predicted. Increased vehicle/ astronaut capability serves to reduce hazards as expected.

The HASSLE program relegates leftover time in the ELS to sleep and rest. An analysis of spare time indicates that the interrupt schedule tends to create more time for ELS operations. After utilizing as much of this spare time as possible, the remainder of the spare time can be described as schedule "slack". This is plotted in Figure 3-2l. The saddle point occurs near the mission design point. The low-performance conditions of operations 1 and 2 result in large amounts of unusable spare time. The high-performance condition spare time could be utilized with increased scientific activity on the exterior of the ELS, since the added "science" tasks appear to be near completion in conditions 6 and 7.

Figures 3-22 to 3-49 summarize plots of tasks, tasks ignored, safety levels, and peak astronaut stress for the seven conditions.

\section*{Conclusions}

The designed mission is sensitive to variations in vehicle and astronat speeds under mild schedule contingencies. This is especially true of reduced performance conditions. Increased capability in LSSM/astronaut performance has a moderate capability to buy back schedule performance.

The severe schedule reduction caused by conditions 1 and 2 is noteworthy. The nominal mission has more capability than required by the schedule, as evidenced by the many hours of nonpriority task 8 "Science" tasks which are accomplished. This slack is quickly used up with reduced performance conditions and priority tasks are omitted.

The planned schedule does not appear to introduce astronaut stress or safety problems but does create a great deal of ELS slack time. It is suggested that the ELS scientific capability be further investigated.

\(67-1964-6\)
Book 3

Figure 3-18. Case 5-Category 8 Accomplishment vs Conditions with I/2-hr Average Interrupts of P (0.08, 0.02, 0.02, 0.50)


Figure 3-19. Case 5 - Travel Time vs Conditions with 1/2-hr Average Interrupts of \(\mathrm{P}(0.08,0.02,0.02,0.5)\)


Figure 3-20. Case 5 - Three Safety Levels vs Conditions with \(1 / 2-h r\) Average Interrupts of \(P(0.08,0.02,0.02,5.0)\)


Figure 3-21. Case 5-Schedule Slack vs Condition. with 1/2-hr Average Interrupts of \(P(0.08,0.02,0.02,0.5)\)



Figure 3-22. Case 5-Seven Conditions Average Time vs Category. Condition. I

ayg time catégory
\begin{tabular}{|c|c|}
\hline . 3015580.3 & -10000E O1 \\
\hline . 11753 F 02 & .20000E O1 \\
\hline .18937f 03 & .30000E O1 \\
\hline .00000f-no & -40000E 01 \\
\hline .36215F D2 & - A9990E 01 \\
\hline .12550E 02 & - b0000e O1 \\
\hline .12387E 02 & -90000e 01 \\
\hline .474578 02 & .80000E 01 \\
\hline . 78315 F 01 & .90000E OX \\
\hline .976678 02 & .99990E O1 \\
\hline
\end{tabular}


Figure 3-23. Case 5-Seven. Conditions Average Time vs Category. Condition 2

```

 avg time . Category
 | . 29591503 | . 10000801 |
| :---: | :---: |
| .114718 02 | -200008 01 |
| . 18903803 | -30000E O1 |
| .00000E-80 | -40000E Ol |
| -50330E O2 | - A9490E O1 |
| .14627t 02 | . 60000801 |
| -10733E 02 | . TO000E 01 |
| .61392E 02 | . 80000E Ol |
| . 74830 El | .90000E 01 |
| .28549F 02 | .99990E |

```

Figure 3-24.. Case 5 - Seven Conditions Average Time vs Category. Condition 3


avg time
 category
\begin{tabular}{|c|c|}
\hline . 31581 F 03 & .10000E 01 \\
\hline .11710F 02 & -20n00E 01 \\
\hline .16735F 03 & -30000e 01 \\
\hline .00000F-30 & -40000e 01 \\
\hline .57476E 02 & -49990E O1 \\
\hline -121878 02 & .60000t 01 \\
\hline .96721r 01 & .70000E 01 \\
\hline .68591F 02 & - A0000E O! \\
\hline . 70262 Cl & .90000E 01 \\
\hline .25433 F 02 & .99990E O1 \\
\hline
\end{tabular}

Figure 3-25. Case 5 - Seven Conditions Average Time vs Category. Condition 4


\section*{avg time category}
\begin{tabular}{|c|c|}
\hline OE 03 & . 100005 \\
\hline .11299\% 02 & . 2n000E 01 \\
\hline . 15237803 & . 30000E 01 \\
\hline .00000F-80 & . 40000 E 01 \\
\hline . STf18f 02 & -49990E Ot \\
\hline .96478201 & -800002 02 \\
\hline . 79022 El & . 70000201 \\
\hline .69704E 02 & -9000nE 01 \\
\hline . 51669 Cl &  \\
\hline .22407E 02 & .99990E 01 \\
\hline
\end{tabular}

Figure 3-26. Case 5 - Seven Conditions Average Time vs Category. Condition 5
airesearch manufacturing division
3-38 Los Angeles. Calitonnia

aVg time category



Figure 3-27. Case 5.- Seven Conditions Average Time vs, Category." Condition 6



Figure 3-28. Case 5-Seven Conditions Average Time vs Category. Condition 7

plme it category
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{r}
.17145501 \\
.22675 \% ~ 01
\end{array}
\] & \[
\begin{gathered}
.0000 E \text { O1 } \\
.20000 E \text { OL }
\end{gathered}
\] \\
\hline .369435 01 & . 30000 E O1 \\
\hline .00000F-8. & . 40000 E 01 \\
\hline - \(00000 \mathrm{~F}-80\) & . 49990E 01 \\
\hline -00000F-80 & . 60000501 \\
\hline .14467 F -1 & .70000E 01 \\
\hline .190935 g & . 80 Onor 01 \\
\hline .691975-11 & -90000E 01 \\
\hline .00000F-30 & .99990E O1 \\
\hline
\end{tabular}

Figure 3-29. Case 5 - Seven Conditions Time Ignored vs Category... Condition I

\section*{Book 3}

\begin{tabular}{|c|c|}
\hline TIME 16 & catesinay \\
\hline . 8329590 & . 10000801 \\
\hline :20000E 01 & -20000E O1 \\
\hline . 00000F-80 & . 40000e 01 \\
\hline -00000F-80 & .49970E 01 \\
\hline -00000r-30 & .60000E O1 \\
\hline -10400F 01 & . 70000001 \\
\hline .12323F 03 & . 80000 Ot \\
\hline . \(69635 \mathrm{r}-11\) & .90900801 \\
\hline .000005-60 & .99990E OL \\
\hline
\end{tabular}

Figure 3-30. Case 5- Seven Conditions Time Ignored vs
Category. Condition 2


TIME IG CATEGORV
\begin{tabular}{|c|c|}
\hline . 11303500 & . 10000201 \\
\hline .15120F 01 & . 20000E 01 \\
\hline -12536E 01 & . 30000E 01 \\
\hline . 0000 Cr -80 & \(.400000^{01}\) \\
\hline -00000F-80 & -49990E O1 \\
\hline - D0000E=80 & .60000E 01 \\
\hline .10433F 01 & .70000E 01 \\
\hline .00354r 02 & . 80000 O1 \\
\hline .96351F-11 & .90000E 01 \\
\hline 00000\%-80 & .99990E \\
\hline
\end{tabular}

Figure 3-31. Case 5 - Seven Conditions Time Ignored vs Category. Condition 3

AIRESEARCH MANUFACTURING DIVISION

time is category
\begin{tabular}{|c|c|}
\hline .52868E-02 & . 10000801 \\
\hline .66329F-01 & . 20000 El \\
\hline -42926\% 09 & -30000e ol \\
\hline .00000F-AD & -40000e 01 \\
\hline - 00000 - 80 & -199908 01 \\
\hline .00000E-89 & .60000E 01 \\
\hline .91333F 03 & -70000e ol \\
\hline . 55324802 & .8000)E OI \\
\hline . \(35432 \mathrm{E}-11\) & .90000E 01 \\
\hline . 00000E-8J & .99990E O1 \\
\hline
\end{tabular}

Figure 3-32. Case 5 - Seven Conditions Time Ignored vs Category. Condition 4

AIRESEARCH MANUFACTURING DIVISION
3-44



TIME IS CATEGORY
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& .00000 F-80 \\
& .00000 F=80
\end{aligned}
\] & \[
\begin{array}{r}
10000 E \\
.20000 E
\end{array}
\] & \[
\begin{aligned}
& 01 \\
& 01
\end{aligned}
\] \\
\hline  & \(.90000 E\)
.40000 E & 01 \\
\hline \[
.000005-90
\]
\[
.00000-80
\] & \[
\begin{aligned}
& .49990 \mathrm{E} \\
& .60000 \mathrm{E}
\end{aligned}
\] & 01
01 \\
\hline -14833F 01 & . 700008 & 01 \\
\hline .169A3F O2 & . 80000 E & 1 \\
\hline . \(76170 \mathrm{E}=12\) & . 900008 & 01 \\
\hline . \(00000 \mathrm{E}-80\) & .99990E & 01 \\
\hline
\end{tabular}

Figure 3-34. Case 5-Seven Conditions Time Ignored vs Category. Condition 6

time ig cafegory
\begin{tabular}{|c|c|}
\hline . ODDO0E-80 & . 10000801 \\
\hline -000005-80 & -20000E 01 \\
\hline . \(433348-01\) & - 30000 el \\
\hline \[
\begin{aligned}
: 00000 E-50 \\
: 00000 E=80
\end{aligned}
\] &  \\
\hline -00000F-30 & -69000E OL \\
\hline .73657\% 00 & . 90000 el \\
\hline -11961E 32 & .803308 O1 \\
\hline .64612E-12 & \(.900000^{01}\) \\
\hline .00000E-80 & .99990E O1 \\
\hline
\end{tabular}

Figure 3-35. Case 5-Seven Conditions Time Ignored vs Category. Condition 7

\begin{tabular}{|c|c|c|c|}
\hline PEAK & STR & Day & \\
\hline .10931 F & 01 & . 100008 & 01 \\
\hline \[
\begin{array}{r}
120435 \\
.178295
\end{array}
\] & \[
\begin{aligned}
& 01 \\
& 01
\end{aligned}
\] & \[
\begin{array}{r}
.20000 \mathrm{E} \\
. .30000 \mathrm{E}
\end{array}
\] & 01
01 \\
\hline \[
\begin{array}{r}
14301 \mathrm{~F} \\
-13608 \mathrm{~F}
\end{array}
\] & O1 & \(.40000 F\)
\(.49990 E\) & 01
01
01 \\
\hline .9ASA4E & 00 & \(.60000 E\) & 01 \\
\hline . 66438 F & 00 & . 700008 & 01 \\
\hline . 70937 F & 00 & . 300000 & 01 \\
\hline . 78962 c & 00 & -9月000E & 01 \\
\hline .79363 F & 00 & . 999908 & 01 \\
\hline .74335 F & no & -11000E & 02 \\
\hline -75033F & 00 & -12000E & 02 \\
\hline .733638 & 00 & .13000 E & 02 \\
\hline
\end{tabular}

Figure 3-36. Case 5 - Seven Conditions Peak Stress vs Day Condition. Condition 1

peak sta day
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& .108675 \\
& .140645
\end{aligned}
\] & \[
\begin{aligned}
& 01 \\
& 01
\end{aligned}
\] & \[
\begin{aligned}
& .10000 \mathrm{~F} \\
& : 200 \text { R E }
\end{aligned}
\] & c1 \\
\hline -122A1F & 01 & -30000\% & C1 \\
\hline . 140585 & & & \\
\hline . 90213 F & 00 & . 60000 E & 01 \\
\hline - 43 smor & no & -70000E & 0 \\
\hline .13832r & 01 & . 800008 & 01 \\
\hline -sangor & 00 & .90000E & 01 \\
\hline .19386E & 01 & .999908 & 01 \\
\hline .14681F & 01 & .11000E & 02 \\
\hline -1a163F & 01 & .12000E & 02 \\
\hline .16071E & 01 & .13000E & \\
\hline
\end{tabular}


Figure 3-37. Case 5-Seven Conditions Peak Stress vs
Day. Condition 2,

AIRESEARCH MANUFACTURING DIVISION


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline -1322E 00 & -305日E no & .1383500 & .1710E-01 & -41siE-05 & . 54136.02 & 906E-02 & 833800 & 1978E01 & - 01 \\
\hline
\end{tabular}

Figure 3-38. Case 5 - Seven Conditions Peak Stress vs Day. Condition 3



Figure 3-39. Case 5 - Seven Conditions. Peak Stress vs Day. Condition 4

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline .1069E 00 & .1328E 00 & . 2196800 & .39125-01 & -98925-01 & .5296F.01 & .1101E-01 & :1605f-01 & ;1032e01 & . 50215001 \\
\hline . SA97E-01 & .23658-01 & . \(5051 \mathrm{E}=02\) & & & & & & & \\
\hline
\end{tabular}

Figure 3-40. Case 5 - Seven Conditions Peak Stress vs Day. Condition 5


\(\begin{array}{ll}\text { Figure 3-41, Case 5-Seven Conditions Peak Stress vs } \\ & \text { Day. Condition } 6\end{array}\)

67-1964-6
Book 3

pear str day
\begin{tabular}{|c|c|}
\hline .664675 00 & -10000E O1 \\
\hline . A ese7\% 00 & -20000E 01 \\
\hline .639132 00 & -90000E 01 \\
\hline -12179F 01 & -40000e 01 \\
\hline . S07atr 00 & . 49900201 \\
\hline - \(00086{ }^{\text {c }} 00\) & -60000E OI \\
\hline . 19480 ¢ 00 & . 70000E OI \\
\hline .670385 00 & - AODOOE 01 \\
\hline -lassse 00 & -90000t 01 \\
\hline -60350E 00 & -99990E O1 \\
\hline -80904. 00 & . 110008 02 \\
\hline -tessar 00 & .12000E O2 \\
\hline .69941E 00 & . 130008 02 \\
\hline
\end{tabular}


Figure 3-42. Case 5-Seven Conditions Peak Stress vs
Day. Condition 7

avg plme safe lev
\begin{tabular}{|c|c|}
\hline .442375 03 & .10000801 \\
\hline -13942F 02 & . 20000501 \\
\hline . 16,606f 01 & . 30000 01 \\
\hline . 54898 O 02 & . 40000E O1 \\
\hline .64068E 02 & . A99908 01 \\
\hline .00000r-80 & . 10000E-02 \\
\hline
\end{tabular}

Figure 3-43. Case 5 - Seven Conditions Average Time vs Safety Level. Condition 1

\begin{tabular}{|c|c|}
\hline AVG TIME & SAFF LCV \\
\hline -4.33st 03 & .10000201 \\
\hline -3893Ef 02 & . 20000 E 61 \\
\hline -2¢tab 02 & . 30000 El \\
\hline .61005F 02 & . 00000801 \\
\hline -284a4t 02 & . 49990201 \\
\hline -0000ar-ato & \(.100008-02\) \\
\hline
\end{tabular}
. ISAOE 02 .4AQ6E NI .AYBAE OL . S113E OI .A03AE OI
Figure 3-44. C Case 5 - Seven Conditions Average Time vs Safety Level... Condition 2



Figure 3-45. Case 5.- Seven Conditions Average Time vs Safety Level:. Condition 3

avg time safe lev
\begin{tabular}{|c|c|}
\hline . 53934503 & . 10000801 \\
\hline .27430F 02 & . 20000801 \\
\hline -9p124E 02 & - 30Jnor 01 \\
\hline .9264br 02 & -100705 01 \\
\hline .12162F 02 & .499908 Ol \\
\hline - 00000 s - & -10000E-02 \\
\hline
\end{tabular}

\title{
Figure 3-46. Case 5. Seven Conditions Average Time vs Safety Level - Condition 4
}

avg tivi safe lev
\begin{tabular}{|c|c|}
\hline .57038 03 & . 10000 E \\
\hline .276568 02 & . 2000 E \\
\hline . 35314 C 02 & -3000nt \\
\hline .42676F 02 & . 40000 E \\
\hline .96393E 01 & .49990E O1 \\
\hline -0000E-80 & .10000E-02 \\
\hline
\end{tabular}
.ansse 01 .3152t ni .30852 01 .2900E 01 .2118E OL
Figure 3-47. Case 5-Seven Conditions Average Time vs

\begin{tabular}{|c|c|}
\hline avg time & Sare ley \\
\hline . Sasaor os & . 10.000801 \\
\hline -23317\% 02 & -20000 01 \\
\hline -293298 0 ? & - 30000 O1 \\
\hline . 2m04se n2 & -40009E 01 \\
\hline .63480 c O1 & -49990E O1 \\
\hline -00000F-ng & -10000E-02 \\
\hline
\end{tabular}

Figure 3-48. Case 5-Seven Conditions Average Time vs Safety Level. Condition 6

\section*{Book 3}

avg time safe iev
\begin{tabular}{|c|c|}
\hline . 59025503 & . 10000801 \\
\hline \[
\begin{aligned}
& 191275 \\
& .2 \text { R1月! } 02 \\
& .
\end{aligned}
\] & -200008 01 \\
\hline .299525 02 & . 40000801 \\
\hline - f0993r \(n 1\) & .49990E OL \\
\hline - 00000 -80 & . 10000E-02 \\
\hline
\end{tabular}

Figure 3-49. Case 5-Seven Conditions Average Time vs Safety Level. Condition 7

\section*{CASE 6 - EFFECT OF INCREASED SCHEDULE INTERRUPT}

\section*{General Conditions}
Vehicle Speeds
\(2,4.33,6,15\) and \(30 \mathrm{~km} / \mathrm{hr}\)
Astronaut Speeds
\(0.6,1.0\), and \(1.4 \times\) nominal.
Interrupt Conditions
\(P_{1}, P_{2}, P_{3}\)

\section*{Specific Conditions (Case 6A)}

Nominal Vehicle ( \(6 \mathrm{~km} / \mathrm{hr}\) ), nominal astronaut
Interrupt Conditions
\[
P_{1}, P_{2}, P_{3}
\]

\section*{Discussion (Case 6A)}

Table 3-2 is a summary of the data related to changing interrupt conditions. Figure \(3-50\) is a summary of scientific accomplishment related to \(P_{\text {, }}\), \(P_{2}\), and \(P_{3}\), when the nominal design point is considered a 100 -percent achievement of activities.

\section*{Conclusion (Case 6A)}

Under nominal conditions, the proposed schedule is most sensitive to small interruptions in schedule and tends to increase in its variance with increased interruptions. Crew safety levels and astronaut stress are not adversely affected by the schedule interruptions.

\section*{Specific Conditions (Case 6B)}

Vehicle Speeds
Astronaut Speed
Interrupt Condition
\(2,4.33,6,15\) and \(30 \mathrm{~km} / \mathrm{hr}\)
Nominal
\(P_{1}, P_{2}\) and \(P_{3}\)

\section*{Discussion (Case 6B)}

Figure \(3-51\) is a summary of scientific accomplishment for varying vehicle speeds under three conditions of interrupt. Figure 3-52 is a summary of the Task 8 nonpriority "science" tasks which are omitted under the same conditions. Figure 3-53 indicates the total amount of time spent in travel under the various conditions. Variation in astronaut stress and time in more dangerous safety levels was not appreciably affected.

TABLE 3-?
SUMMARY: NOMINAL VEHICLE AND ASTRONAUT \(P_{1}, P_{2}, P_{3}{ }^{\circ}\)



Figure 3-50. Case 6A - Effect of Increased Interrupt on Nominal Mission Omitted


Figure 3-51. Case 6B - Percent Scientific Tasks vs LSSM Speed (Inter ruptions \(P_{1}, P_{2}, P_{3}\) )


Figure 3-52. Case 6B - Hours Task 8 Omitted for Three Interrupt Times vs LSSM Speed


Figure 3-53. Case 6B - Travel Time vs LSSM Speed for Three Interrupts

\section*{Conclusion (Case 6B)}

Scientific mission accomplishment depends more on vehicle speed than on total interrupt time. Total variation in interrupt, which could exceed 47 hr of time, causes the scientific accomplishment to vary less than 25 percent under nominal vehicle conditions. LSSM speed capability reduction can cause more than 50 -percent decreases in scientific accomplishment. Higher vehicle speed capability appears to produce small gains in scientific accomplishment.

Specific Conditions (Case 6C)
Vehicle Speed Nominal \(6 \mathrm{~km} / \mathrm{hr}\)
Astronaut Speeds \(\quad 0.6,1.0\) and \(1.4 \times\) nominal
Interrupt Conditions
\[
P_{1}, P_{2}, P_{3}
\]

\section*{Discussion (Case 6C)}

Figure \(3-54\) is a summary of total scientific accomplishment versus total hours of interrupt for three astronaut speeds. Figure \(3-55\) is a summary of time spent at the most hazardous safety level for various cases of interrupt and astronaut speed.

Conclusion (Case 6C)
Astronaut speed variations produce large variations in scientific accomplishment and safety levels that are larger than those produced by variations in schedule interrupt.

AIRESEARCH MANUFACTURING DIVIIION


Figure 3-54. Case 6C - Scientific Task Accomplishment vs Total Interrupt for Three Astronaut Speeds


Figure 3-55. Case 6C - Hours in Most Dangerous Safety Level vs Interrupts for Three Astronaut Speeds

SECTION 4

\section*{SUGGESTED HASSLE IMPROVEMENTS}

\section*{GENERAL}

Areas in which work to improve existing capability for evaluation of mission schedules are briefly described below. The suggested improvements are designed to evaluate the effect of the equipment used on the success of the mission. This requires an objective definition of mission success and an understanding of how the specific equipment affects each task in the mission. To take full advantage of the suggested improvements; a program of equal magnitude should be carried out to supply the data required by improved methods.

\section*{LEVEL OF SUCCESS}

\section*{Task Success}

The desire to measure objectively a given completed task simulation presents difficult problems in the present HASSLE. A useful compromise is to require levels of success only for scientific tasks. The possible outcomes of each such task in the simulation must then be enumerated to decide whether the nature of the task permits a continuous distribution of success levels about 1.0, the desired outcome, or only a few discrete values.

\section*{Mission Success}

The mission success level should be treated as an average of the individual task success levels selected by HASSLE. The selection of the task success will be based on a draw from a population of numbers distributed as specified by the statistical description of the detailed task simulation. Consequently, no other introduction of task-performance-related parameters into HASSLE will be necessary.

The success level of each task and the time of completion should be stored in memory so that both task success and total current mission success may be displayed as a function of mission time.

\section*{DETAILED TASK SIMULATION}

Many of the results desired from the simulation of Lunar Surface Operations would be more efficiently found by a detailed simulation of particular tasks than of the whole mission. In this way, the repeated simulation of unrelated or routine tasks cannot suppress the effect of a special equipment parameter on the particular tasks to which it is relevant. The simulation can also be specially designed for the task in question and may include an appropriate mathematical model of the object upon which the task is being performed. In many cases, the input data required for HASSLE can be more properilyspecified, using the output of a detailed task simulation than by relying on previous experience.

\section*{OUTPUT PLOTS VERSUS MISSION TIME}

A method for specifying task time spent in each category in the entire mission would permit the effect of parametric changes to be evaluated throughout the mission. Problem areas at specific times during the mission could then be identified with the specific tasks and parametric variables to which they correspond.

Several output variables are suggested for this treatment, although others may ultimately be desired. Current values of safety level, interrupt probability, interrupt occurrence, task success, mission success, power requirement, human energy requirement, oxygen consumed, accumulated time in task category, accumulated equipment operating time, and total and effective stresses could be made available for observation during the mission. The number of hours ahead or behind schedule, plotted against mission time, would also be of value in assessing the value of the combination of parameters characterizing the particular run.

\section*{SAFETY LEVEL/INTERRUPT PROBABILITY}

These aspects of the HASSLE program should be based on analysis similar to that used in reliability work. Two separate systems are involved; the safety level need be concerned only with the reliability of equipment that is critical for life support times the probability of astronaut failure unrelated to equipment failure. The interrupt probability should be based on the reliability of all equipment, life support included, whose failure could delay the mission. The total length of time each piece of equipment is used must be recorded for use in the reliability computations.

\section*{IMPROVED INPUT SCHEDULE PRIORITIES AND FLEXIBILITY}

The present program tends to contain input schedule restrictions which are not representative of operational procedures. Simple logic, such as contained in scheduling type programs, should be introduced into HASSLE. An improved or expanded priority listing would help the program seek a better solution than is presently available. Task time requirements which are more nearly equal to facilitate re-scheduling of such activity are desirable. In addition, schedule elements that are obviously somewhat flexible, such as rest and eating, should be simplified to provide more computer memory for crucial output parameters and to simplify data handing.

\section*{QUALITY OF INPUT DATA}

Objective information on average times, time deviations, touch-up times, percent essential, oxygen consumption, and operator work load should be obtained for all routine daily tasks. If pertinent data are not available in the literature, experimental studies with human subjects should be carried out. This would provide an accurate basis for constructing the \(24-\mathrm{hr}\) timelines for basic schedules.

\section*{REFERENCES}
(1). Space General Corp. and Honeywell Inc: Joint Study, Lunar Exploration PATTERN Study, Honeywell document 6SDZ; 8 July 1966.
(2) Honeywell Inc., Man System Criteria for Extraterrestrial Roving Vehicles Phase II - A Lunar Human Factors Safety Analysis, Honeywell Report 12504-ITR-3, 15 August 1966.
(3) Spady, Amos A. Jr. and William D. Krasnow, Exploratory Study of Man's Self-Locomotion Capabilities with a Space Suit in Lunar Gravity, NASA TN D-2641, NASA Langley Research Center;:July 1966.
(4) Hewes, Donald E., Amos A. Spady, Jr., and Randall L. Harris, Comparative Measurements of Man's Walking and Running. Gaits in Earth and Simulated Lunar Gravity, NASA TN D-3363, NASA Langley Research Center, June 1966.
(5) Hewes, Donald E. and Amos A. Spady, Jr., Evaluation of a GravitySimulation Technique for Studies of Man's Self-Locomotion in Lunar Environment, NASA TN D-2176, NASA Langley Research Center, March 1964.```


[^0]:    *These estimates were made by summing the oxygen consumption per minute values corresponding to the heart rate observed each minute of the inflated suit treadmill activity.

[^1]:    *Based on l-g simulations and the work required for men performing tasks in current pressure suits, $6-h r$ excursions may be excessive.

[^2]:    
    0240
    0741
    $\begin{array}{ll}\text { CAON MO. } & 0241 \\ \text { ORA2 }\end{array}$
    $\begin{array}{ll}\text { CAQD } & 020 . \\ \text { CAOA } & 0243\end{array}$
    caon y
    CAOD "O.
    CAQD wn
    CAON NO.
    CARE NO.
    CARD NO.
    $\begin{array}{ll}\text { CARD MA. } & 0747 \\ \text { CAQN MO. } & 0749\end{array}$ $\begin{array}{ll}C A R O & 0749 \\ \text { CAOD NO. } & 0250 \\ C A O D\end{array}$ $\begin{array}{ll}C A O D \\ \text { CAOD } & 025 \\ \text { CAOD } & 025\end{array}$

