NASA Facts

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center Houston, Texas 77058 International Space Station

June 1998

INTERNATIONAL SPACE STATION ASSEMBLY SEQUENCE (5/31/98: Revision D)

Note: Some issues in this assembly sequence remain under review and will be resolved at a Space Station Control Board meeting in September 1998. Missions with open issues are noted in italics.

Data	Flight	Launch	Configuration	F lama	
Jaie	rugnt	Vehicle	Configuration	Liement(s)	Kationaic
Aug 1999	4A	US Space Shuttle (STS-97)		 Integrated Truss Structure P6 Photovoltaic Module Radiators 	 Provides first US solar power with solar arrays and batteries. called photovoltaic (PV) module. First PV module installed temporarily on Z1 trus until after 13A when can be moved to P5 truss. Two radiators provide early cooling, called photovoltaic (PV) Thermal Control System (TCS) radiators. Also, S-band communications system is activated for voice and telemetry.
Oct 1999	5A	US Space Shuttle (STS-98)		• U.S. Laboratory Module	 Provides initial US user capability. Launched with 5 system racks already installed inside of the module. Control Moment Gyroscopes are activated with delivery of electronics in lab, providing electrically powered attitude control.
Dec 1999	6 A	US Space Shuttle (STS-99)		 MPLM (U.S. Lab outfitting) Ultra High Frequency (UHF) antenna Space Station Remote Manipulator System (SSRMS) 	 Italian-built Multi-Purpose Logistics Module (MPLM) carries 6 system racks and 2 storage racks to be installed in U.S. Lab. UHF antenna provides space-to-space communications capability for US-based spacewalks. Delivers Canadian SSRMS (station mechanical arm) needed to perform assembly operations on later flights.
Jan 2000	7A	US Space Shuttle (STS- 100)		 Joint Airlock High Pressure Gas Assembly 	 Airlock provides station-based Extravehicular Activity (EVA) spacewalking capability for both US and Russian spacesuits. High pressure gas assembly supports spacewalk operations and augments the Service Module gas resupply system.
			Phase	[] Compl	ete . ·
Mar 2000	4R	Russian Soyuz Rocket		Docking Compartment Module-1 (DCM-1)	 Provides additional egress, ingress location for Russian-based spacewalks and a Soyuz docking port.
Mar 2000 some flight details still under review	7A.1	US Space Shuttle (STS-102)		• MPLM	• U.S. stowage racks and International Standard Payload Racks (ISPRs) carried in MPLM.

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
April 2001 some flight details still under review	3R	Russian Proton Rocket		• Universal Docking Module	• Provides docking locations for Russian Researci Modules and a Docking Compartment (DC2) delivered on Flight SR. The module also provide additional life support systems capabilities.
May 2001	12A	US Space Shuttle (STS- 111)		 Second port truss segment (ITS P3/P4) Solar array and batteries 	 Delivers second port truss segment (P3/P4 truss) to attach to first port truss segment (P1 truss). Central cooling radiators, delivered earlier on flights 9A and 11A, are deployed from first starboard (S1 truss) port (P1) truss segments. Exterior attachments for Brazilian Unpressurized Logistics Carriers (ULCs) are delivered.
May 2001 some flight details still under review	SR	Russian Soyuz Rocket		• Docking Compartment 2 (DC2)	• Provides an improved Russian airlock.
June 2001	12A.1	US Space Shuttle (STS- 112)		 Third port truss segment (ITS P5) Multi-Purpose Logistics Module 	• Delivers third port truss segment (P5 truss) to attach to second port truss segment (P3/P4 truss).
June 2001	13A	US Space Shuttle (STS- 113)		 Second starboard truss segment (ITS S3/S4) Solar array set and batteries (Photovoltaic Module) 	 The second starboard truss segment (S3/S4 truss) is attached along with a third set of solar arrays. Four external attachment sites for truss-mounted exterior experiments and research are delivered.
Sep 2001	10A	US Space Shuttle (STS- 114)		• Node 2	 The second of three station connecting modules, Node 2, attaches to end of U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accomodation Module and later Multi-Purpose Logistics Modules Primary docking location for the Shuttle will be a pressurized mating adapter attached to Node 2.

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
Aug 2002	14A	US Space Shuttle (STS- 120)		 Cupola Science Power Platform (SPP) Solar Arrays Service Module Micrometeroid and Orbital Debris Shields (SMMOD) 	 Cupola with eight windows provides station crew with direct viewing capability for some robotics operations, spacewalks and experiments. Two additional Russian Science Power Platform (SPP) Solar Arrays complete the arrays on the SPP. SPP arrays and exterior debris shielding for Service Module (SMMOD) are carried on Brazilian-provided Unpressurized Logistics Carrier (ULC).
Aug 2002	8R	Russian Soyuz Rocket		• Research Module	• Delivers first of two Russian laboratories providing experiment and research facilities.
Sep 2002	UF-5	US Space Shuttle (STS- 121)		 Multi-Purpose Logistics Module Express Pallet 	 Provides for experiment delivery, resupply and changeout. Multi-Purpose Logisitcs Module carries inside experiment equipment racks. Express Pallet carries external experiment equipment.
Oct 2002	20 A	US Space Shuttle (STS- 122)		• Node 3	 Delivers third node as conecting module for station (Node 3) to be attached underneath Unity node (Node 1). Inside of Node 3 are 2 avionics racks and 2 life support system racks. Node 3 provides attachment points for the U.S. Habitation Module, U.S. Crew Return Vehicle, pressurized mating adapter, and any future station additions.
Nov 2002 some flight details still under review	10R	Russian Soyuz Rocket		• Research Module 2	 Delivers a second Russian laboratory to house experiments and research facilities.
Nov 2002 target date, flight details still under review	17A	US Space Shuttle (STS-123)		 Multi-Purpose Logistics Module Node 3, U.S. Lab racks 	 Delivers racks for Node 3 that allow expansion of station crew from three members to up to six members. Outfits Node 3 with racks carried in MPLM: 2 life support system racks; 2 flight crew equipment racks (waste collection system and galley) and 3 Crew Health Care System racks. For U.S. Lab, delivers 1 systems rack, 1 stowage rack and experiment racks.

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
Jan 2004	16 A	US Space Shuttle (STS- 131)		• U.S. Habitation Module	 Delivers U.S. Habitation Module to enhance created accomodations and provide for a station crew with as many as seven members.

NOTES:

 Additional Progress, Soyuz, possible H-II Transfer Vehicle and Automated Transfer Vehicle flights for crew transport, logistics and resupply are not listed.

5/9/98

International Space Station Assembly Sequence

5/flap

International Space Station Assembly Sequence

NASA Facts

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center

International Space Station

June 1997

INTERNATIONAL SPACE STATION ASSEMBLY SEQUENCE (9/30/97 Rev C)

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
June 1998	1A/R	Russian		Functional Cargo Block (FGB)	 FGB is a self-supporting active vehicle. It provides propulsive control capability and power through the early assembly stages. It provides fuel storage capability. It provides rendezvous and docking capability to the Service Module.
July 1998	2A	US Orbiter		 Node 1 Pressurized Mating Adapters -1 & -2 	 Launched passive with PMA-1, PMA-2 and 1 stowage rack. PMA-1 provides the interfaces between US and Russian elements. PMA-2 provides a Shuttle docking location. Eventually, Node 1's six ports will provide connecting points for the Z1 truss; U.S. lab; airlock; cupola; Node 3; and the early MPLM as well as the FGB.
Dec 1998	1R	Russian	- A	Service Module	 Primary Russian element. It provides Environmental Control & Life Support System (ECLSS) functions to all elements. Primary docking for Progress-type resupply vehicles Provides propulsive attitude control and reboost capability
Dec 1998	2A.1	US Orbiter	je-	• Spacehab Double Cargo Module	• Logistics and resupply cargo
Jan 1999	3A	US Orbiter		 Integrated Truss Structure (ITS) Z1 PMA-3 Ku-band Control Moment Gyros (CMGs) 	 ITS Z1 allows the temporary installation of the P6 Photovoltaic (PV) module to Node 1 for early US based power Ku-band communication system supports early science capability on 6A CMGs provide non-propulsive attitude control when activated on 5A PMA-3 provides a Shuttle docking for the P6 PV Module on 4A and Lab installation on flight 5A
Jan 1999	2R	Russian	No.	• Soyuz	 Establishes first station manning with three- person crew Provides assured crew return capability without the Orbiter present

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
Jan 2000	UF-1	US Orbiter		 MPLM (ISPRs) PV Module batteries 	 Provides payload utilization delivering US Lab ISPR racks; two storage racks
Feb 2000	8A	US Orbiter		 ITS S0 Mobile Transporter (MT) 	 ITS S0 provides attachment and umbilicals between pressurized elements and permanent truss-mounted distributed system/utilities Airlock spur provides an EVA translation path from the airlock to the truss The MT which provides the truss translation capability for the Mobile Servicing System is also delivered
Mar 2000	UF-2	US Orbiter		 MPLM (ISPRs) MBS Lab Sys. 	 Provides additional payloads MBS provides truss based SSRMS capability Three additional stowage racks are delivered
June 2000	9A	US Orbiter		 ITS S1 CETA Cart A 	 Delivers the starboard US Central Thermal Control System Radiators remain stowed until power system is activated on flight 12A Provides second string of S-band capability The CETA Cart provides EVA crew translation capability along the truss
July 2000	9A.1	US Orbiter		• SPP with four solar arrays	 Delivery of the Russian power/control mast with four solar arrays providing additional Russian power Delivers European Robotic Arm (ERA)
Oct 2000	11A	US Orbiter		 ITS P1 CETA Cart B 	 Delivers the port US central thermal control system Radiators remain stowed until power system is activated on flight 12A The CETA Cart provides EVA crew translation capability along the truss

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
Aug 2001	1J	US Orbiter	AA	• JEM PM	 Japanese Experiment Module is delivered & activated (four JEM sys. racks) JEM RMS is delivered & activated
Sep 2001	UF-3	US Orbiter	A	• MPLM (ISPRs)	• Provides for payload resupply and/or changeout
Jan 2002	UF-4	US Orbiter	A BA	 Express Pallet SLP (SPDM, ATA, HP Gas) 	 Express Pallet transports external payloads Special Purpose Dexterous Manipulator ("Canada Hand") provides robotics maintenance capability Spacelab Palllet (SLP) carries Special Purpose Dexterous Manipulator ("Canada Hand") which provides robotics maintenance capability; Ammonia Tank Assembly (ATA); and High Pressure Gas O2 tank.
Feb 2002	2J/A	US Orbiter		 JEM EF ELM ES PV Module Batteries 	 Delivers JEM exposed experimental facilities PV batteries complete battery complements on PV modules P4 & S4
Feb 2002	9R.1	Russian		• Docking & Stowage Module-1	 Mounted to the FGB nadir port Provides additional on-orbit stowage and a Soyuz docking location
May 2002	9R.2	Russian		• Docking & Stowage Module- 2	 Mounted to Docking and Stowage Module-1 Provides additional on-orbit stowage and a Soyuz docking location

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
Nov 2002	17A	US Orbiter		 MPLM Node, Lab racks 	 Outfits Node 3 with 4 racks – 2 Environmental Control and Life Support System racks and 2 Flight Crew Equipment racks (waste collection system and galley) Three Crew Health Care System racks delivered Delivers 1 U.S. Lab rack, 1 stowage rack, ISPRs
Jan 2003	11R	Russian		• Life Support Module 1 (LSM1)	• Life Support Module provides oxygen regeneration capability & other life support functions
Mar 2003	12R	Russian		• Life Support Module 2 (LSM2)	 Second Life Support Module provides oxygen regeneration capability & other life support functions
Mar 2003	18A	US Orbiter		• CRV 1	 Crew Return Vehicle attached to the station provides additional 4-person crew return capability added to already existing 3-person Soyuz crew return capability
Apr 2003	19A	US Orbiter		• MPLM	 Delivers 4 crew quarters racks to be placed in Node 2 and provide for transition to 6-person crew Delivers 6 U.S. stowage racks
Jul 2003	15A	US Orbiter		• PV Module S6	 Fourth U.S. truss-based PV module completing the major power system elements Starboard MT/CETA rails