Low Magnitude, High Frequency Signals Could Reduce Bone Loss During Spaceflight

From The Space Library

Jump to: navigation, search

Author - A. Hawkey

Co-Author(s) -

JBIS Volume # - 60

Page # - 278-284

Year - 2007

Keywords - Bone loss, vibration, exercise, microgravity, human spaceflight

JBIS Reference Code # - 2007.60.278

Number of Pages - 7

[edit] Abstract

The removal of gravitational loading results in a loss of homeostasis of the skeleton. This leads to significant losses of bone mass during long-duration missions in space. Conventional exercise countermeasures, such as running and resistance training, have only limited effectiveness in reducing the rate at which bone is demineralised in microgravity. Bone loss, therefore, remains a major concern and if not annulled could be so severe as to jeopardise an extended human presence in space. In addition, current exercise regimes occupy valuable crew time, and astronauts often find the equipment cumbersome and uncomfortable to use. Recent studies suggest that exposing the body to short periods (<20mins) of low magnitude (<1g), high frequency (15-35Hz) signals (vibration) everyday could reduce, even prevent, bone loss during conditions such as osteoporo- sis on earth. The new vibration therapy treatment could also have several advantages over existing exercise countermeasures used in spaceflight due to it being very simple to operate, relatively inexpensive, and requiring only short periods of time `training', unlike the complicated, expensive and time-consuming devices currently used. This review highlights the detrimen- tal effects that microgravity has on the strength and integrity of bone, how current countermeasures are ineffective at stemming this level of deterioration, and how new vibration techniques could significantly reduce space-induced bone loss.


To BUY this paper click here




JBIS is © 1934-2013 British Interplanetary Society -